Дано: Решение: S = 168 км t = 1,5 ч Так как автомобиль и автобус двигаются навстречу v₁ = v₂ + 12 (км/ч) друг другу, то скорость сближения: v = v₁ + v₂ = 2v₂+12 (км/ч) Найти: v₂ - ? Скорость сближения равна скорости, с которой оба движущихся объекта преодолеют расстояние S за время t: v = S/t = 168:1,5 = 112 (км/ч) Тогда: 2v₂ + 12 = 112 2v₂ = 100 v₂ = 50 (км/ч) ответ: 50 км/ч.
Рассмотрим треугольник АСН, он прямоугольный, ∠АНС=90°, поскольку СН - это высота, а высота опускается на сторону треугольника под углом 90°. АС - гипотенуза, СН и АН - это катеты. ∠НАС=75°. Тангенс угла у - это отношение противолежащего катета к прилежащему: tg ∠НАС= СН/АН, отсюда АН=СН/tg ∠НАС=3/tg 75°=3/3,732=0,8038см
АВ=АН+ВН, отсюда ВН=АВ-АН=6-0,8038=5,1962 см
Рассмотрим треугольник ВСН, он прямоугольный, ∠ВНС=90°, поскольку СН - это высота, а высота опускается на сторону треугольника под углом 90°. ВС - гипотенуза, СН и ВН - это катеты. Тангенс угла у - это отношение противолежащего катета к прилежащему: tg ∠НВС= СН/ВН=3/5,1962=0,577 Значит выходит по таблице тангенсов, что ∠НВС=30°. Исходя из того, что ∠АВС=∠НВС, значит искомый ∠АВС=30°
7сут.3ч=7*24+3ч=171ч
10сут.18ч=10*24+18=258ч.
5ч.38мин=5*60+38=338мин
8ч.7мин=8*60+7=437мин
12ч.42мин=12*60+42=762мин.
2мин. 8с=2*60+8=128с
6мин. 24с=6*60+24=384с
45мин. 36с=45*60+36=2736с.