1) зачеркнули 7 из числа 17;
2) зачеркнули 8 из числа 85.
Решение 1:Искомое двузначное число представим в виде (
и
- однозначные и неотрицательные, при этом
).
1). Пусть зачеркнули цифру из разряда десятков. Тогда из числа получилось число
. Нам нужно выполнение следующего равенства:
Единственные однозначные натуральные решения: и
.
Значит, число ⇒
.
2). Пусть зачеркнули цифру из разряда единиц. ⇒
. Уравнение составляется и решается по аналогии:
Откуда и
.
Имеем второе подходящее решение: ⇒
.
Значит, двузначное число - это или , или
.
Можно было и кратким подбором решить, умножая все цифры на (умножаемая цифра - та, которая могла остаться после вычеркивания), пока не станут появляться трехзначные числа.
Нам нужно, чтобы в получившемся числе присутствовало умножаемое число (иначе как оно смогло бы потом остаться?):
- не подходит, не двузначное.
- подходит, вычеркивали
из числа
.
- не подходит.
- не подходит.
- не подходит.
- подходит, вычеркивали
из числа
.
- не подходит, начинаются трехзначные числа.
Получаем те же самые два решения: и
.
х³-у³=-8
х³-(2+х)³=-8
х³-8-12х-6х²-х³+8=0
-6х²-12х=0
-6х(х+2)=0
х=0 х=-2
у=2 у=0