Допустим, недоступная точка находится в пределах видимости. Пусть это будет, скажем, вершина горы.
Выбираем точку на местности и фиксируем направление на цель. В геодезии для этого используют теодолит — измерительный прибор для измерения горизонтальных и вертикальных углов. Устанавливаем теодолит и направляем его на гору. Затем влево или вправо от этого направления отмеряем угол 90. Это достигается поворотом самого теодолита, на котором нанесена шкала. Затем смотрим в прибор и фиксируем вторую точку на местности по линии. - Это лучше делать Вашему он должен встать в эту точку). Отмечаем первую точку флажком и переносим теодолит во вторую точку. Направляем прибор на первую точку. Фиксируем это положение и разворачиваем теодолит на вершину горы. Смотрим на полученный угол. Чем больше будет расстояние между точками измерений, тем больше будет разница между этим углом и 90° и, соответственно, тем больше будет точность измерения расстояния до вершины.
Предположим, что расстояние между точками измерений получилось 2 км (это расстояние еще называют базисом), а угол между направлением на гору и направлением на первую точку измерений - 60°.
Таким образом, мы получили на местности прямоугольный треугольник, у которого меньший катет - 2 км и прилежащий к этому катету угол - 60° Несложно вычислить второй катет и гипотенузу в этом треугольнике:
a = c*sinα => c = a/sinα = 2/sin30 = 2: 1/2 = 2*2 =4 (км)
b = c*cosα => b = 4 *√3/2 = 2√3 ≈ 3,46 (км)
Таким образом, расстояние до вершины горы из второй точки измерений оказалось 4 км, из первой точки измерений - 3,46 км
На самом деле расстояние между точками измерений берут меньше и углы получаются далекие от табличных значений..)) Но принцип такого измерения расстояний не только для недоступных точек широко используется на практике и получил название метода триангуляции.
ТРИАНГУЛЯЦИЯ (от лат. triangulum - треугольник), метод определения положения геодезических пунктов построением на местности систем смежно расположенных треугольников, в которых измеряют длину одной стороны (по базису) и углы, а длины других сторон получают тригонометрически. Основной метод создания опорной геодезической сети и градусных измерений.
Дано: Масса сплава --- 2ц4/5кг; Медь (Cu) ?кг, 5 частей; Цинк (Zn) ?кг, 3 части. Найти массы меди и цинка. Решение. 5 + 3 = 8 (частей) --- всего частей в сплаве; 2ц4/5кг = 14/5 кг преобразование смешанного числа в неправильную дробь для удобства расчетов. (14/5) : 8 = 14/40 = 7/20(кг) масса, приходящаяся на одну часть сплава; (7/20) * 5 = 35/20 = 7/4 = 1ц3/4 (кг) --- масса меди в сплаве; (7/20) * 3 = 21/20 = 1ц1/20 (кг) --- масса цинка в сплаве; ответ: В сплаве 1ц 3/4 кг (или 1,75 кг) меди и 1ц1/20 кг (или 1,05 кг) цинка. Проверка: 1ц3/4 + 1ц1/20 = 56/20 = 2ц4/5(кг), что соответствует условию.
Составим уравнение . где Х это масса петуха ; Х + 5Х = Х + ( Х + 8 ) 6х=х+х+8 6х-2х=8 4х=8 х=8:4 х=2 кг ( масса петуха) 2кг * 5 =10кг или 2кг + 8кг = 10кг ( масса индюка ).
Допустим, недоступная точка находится в пределах видимости.
Пусть это будет, скажем, вершина горы.
Выбираем точку на местности и фиксируем направление на цель.
В геодезии для этого используют теодолит — измерительный прибор для измерения горизонтальных и вертикальных углов.
Устанавливаем теодолит и направляем его на гору.
Затем влево или вправо от этого направления отмеряем угол 90.
Это достигается поворотом самого теодолита, на котором нанесена шкала.
Затем смотрим в прибор и фиксируем вторую точку на местности по линии. - Это лучше делать Вашему он должен встать в эту точку). Отмечаем первую точку флажком и переносим теодолит во вторую точку. Направляем прибор на первую точку. Фиксируем это положение и разворачиваем теодолит на вершину горы.
Смотрим на полученный угол. Чем больше будет расстояние между точками измерений, тем больше будет разница между этим углом и 90° и, соответственно, тем больше будет точность измерения расстояния до вершины.
Предположим, что расстояние между точками измерений получилось 2 км (это расстояние еще называют базисом), а угол между направлением на гору и направлением на первую точку измерений - 60°.
Таким образом, мы получили на местности прямоугольный треугольник, у которого меньший катет - 2 км и прилежащий к этому катету угол - 60°
Несложно вычислить второй катет и гипотенузу в этом треугольнике:
a = c*sinα => c = a/sinα = 2/sin30 = 2: 1/2 = 2*2 =4 (км)
b = c*cosα => b = 4 *√3/2 = 2√3 ≈ 3,46 (км)
Таким образом, расстояние до вершины горы из второй точки измерений оказалось 4 км, из первой точки измерений - 3,46 км
На самом деле расстояние между точками измерений берут меньше и углы получаются далекие от табличных значений..)) Но принцип такого измерения расстояний не только для недоступных точек широко используется на практике и получил название метода триангуляции.
ТРИАНГУЛЯЦИЯ (от лат. triangulum - треугольник), метод определения положения геодезических пунктов построением на местности систем смежно расположенных треугольников, в которых измеряют длину одной стороны (по базису) и углы, а длины других сторон получают тригонометрически. Основной метод создания опорной геодезической сети и градусных измерений.