Решение.
Пусть дан квадрат со стороной х см. Так как из условия задачи известно, что квадрат делится без остатка на прямоугольники длиной 13 см и шириной 5 см, то длина стороны квадрата должна быть кратна наименьшему общему кратному чисел 13 и 5, то есть числу НОК(13; 5) = 13 ∙ 5 = 65. Получаем, что х = 65 ∙ n (см), где n∈ N. Чтобы определить наименьшую площадь квадрата, выберем наименьшее натуральное число n = 1, тогда х = 65 см. Площадь квадрата S = х² (см²). Подставим в формулу значение найденной длины стороны квадрата и произведём расчеты:
S = 65² (см²);
S = 4225 (см²).
ответ: наименьшая площадь квадрата составляет 4225 см².
а) Координаты вектора АВ: AB{Xb-Xa;Yb-Ya} или AB{1;1;-7}.
Координаты вектора CD: CD{Xd-Xc;Yd-Yc} или CD{-3;11;-1}.
б) Разность векторов 2АВ-СD равна вектору
(2АВ-СD ){2Xab-Xcd;2Yab-Ycd;2Zab-Zcd} или(2АВ-СD ){5;-9;-13}.
в) Cos(AB,CD)=скалярное произведение векторов АВ и СD, деленное на произведение их модулей.Cosα=(Xab*Xcd+Yab*Ycd+Zab*Zcd)/|AB|*|CD| или Cosα=(-3+11+7)/[√(1+1+49)*√(9+121+1)=15/√6681≈15/81,7≈0,184.
2. Векторы перпендикулярны, если их скалярное произведение равно 0. (Xab*Xcd+Yab*Ycd+Zab*Zcd)=0 Координаты вектора АВ: AB{Xb-Xa;Yb-Ya} или AB{-3;3;-1}.
Координаты вектораCD: CD{Xd-Xc;Yd-Yc} или CD{п-4;0;-8-п}. Тогда -3п+0+8+п=0, отсюда п=4.
Длину реки округляем до сотен километров.
2137 км ~ 2100 км.
Делим на масштаб карты и получаем размер на карте.
2100 км / 25 км/см =84 см.
ответ: На карте будет 84 см.