Чертеж беру ваш.
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Доказано.
Пошаговое объяснение:
1) (6y-1)(y+2)<(3y+4)(2y+1)
6y^2 +12y-y-2<6y^ +3y+8y+4
6y^2 -6y^2 +11y-11y<4+2
0<6
y принадлежит (-∞; +∞).
2) 4(х+2)<(х+3)^2 -2х
4x+8<x^2 +6x+9-2x
x^2 +4x+9-4x-8>0
x^2 +1>0
x^2>-1 - данное неравенство верно при любом значении x.
Следовательно, x принадлежит (-∞; +∞).
1) (3y-1)(2y+1)>(2y-1)(2+3y)
6y^2 +3y-2y-1>4y+6y^2 -2-3y
6y^2 -6y^2 +y-y>1-2
0>-1
x принадлежит (-∞; +∞).
2) (x-5)^2 +3x>7(1-x)
x^2 -10x+25+3x-7+7x>0
x^2 +18>0
x^2>-18 - данное неравенство верно при любом значении x.
Следовательно, x принадлежит (-∞; +∞).
пусть x неизвестное число
(20+x)=(100-x)*4
20+x=400-4x
5x=380
x=380:5
x=76