М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shtoshpulodov
shtoshpulodov
29.05.2022 20:46 •  Математика

Запишите два соседних натуральных числа, между которыми находится каждое из чисел 1) 5,79; 2) 8 000,05; 3) 79,51; 4)346,5 и укажите, к какому из этих двух натуральных чисел оно ближе.

👇
Ответ:
dadmaeva426
dadmaeva426
29.05.2022
1) 5 и 6    ближе к 6
2) 8000 и 8001  ближе к 8000 
3) 79 и 80  ближе к 80
4) 346 и 347  ровно между
4,6(4 оценок)
Открыть все ответы
Ответ:
Backlajan89
Backlajan89
29.05.2022
1.
3/9=1/3
28/35=4/5
75/125=3/5
16/18=8/9
10/14=5/7
98/196=1/2
2. 0,45=9/20, 0,26=13/50, 0,375=3/8
3. прямой угол = 90С
    45/90=1/2
    18/90=1/5
    65/90=13/18
4.
 11/35+16/35-13/35=14/35=2/5
2 3/14 + 3 5/14 - 1 1/14=4 7/14 = 4 1/2
5.
12*10/15*3=150/45=2 2/3
42*11*34/17*21*33=15708/11781=1 1/3
6.
13*5+13*9/21*26=13*(5+9) / 21*26=182/546=1/3
8*17-17*4/51/16=17*(8-4) / 51*6=68/816=1/12
7. 
в уравнении наверное + 3 1/21? Тогда:
8 10/21 - х= 2 2/21 + 3 1/21
8 10/21 - х = 5 3/21
х = 8 10/21 - 5 3/21
х = 3 7/21
8 10/21 - 3 7/21 = 2 2/21 + 3 1/21
5 3/21 = 5 3/21 
ответ: х= 3 3/21
4,6(86 оценок)
Ответ:
vaynasmirnov021
vaynasmirnov021
29.05.2022

Zadanie 4 (Задание 4)

Найдите количество деревьев на n вершинах, в которых степень каждой вершины не больше 2.

n=1 => дерево состоит из одной вершины степени 0.

n>=2 => 1] Вершины степени 0 быть не может (иначе граф несвязный). Значит степень вершин либо 1, либо 2. 2] существует простая цепь, являющаяся подграфом дерева.

Тогда будем достраивать дерево из цепи. Ребро - простая цепь.

Алгоритм:

Изначально есть ребро <u,v>. Степени концов цепи - вершин u и v - равны 1.

Если на данном шаге число вершин в графе равно n - получен один из искомых графов, больше его не изменяем.

Если же число вершин < n, добавляем ребро.

На 1ом шаге мы можем добавить либо ребро <u,a>, либо ребро <a,v>. Без нарушения общности, добавим <u,a>. У нас все еще простая цепь. При этом у концов a и v степень 1, а у всех остальных вершин, здесь это вершина u, - 2, и к ним ребра присоединить уже нельзя. Повторяя подобные операции, будем получать на каждом шаге простую цепь.

На n вершинах можно построить ровно одну простую цепь. А значит и число искомых деревьев равно 1 .

Zadanie 5 (Задание 5)

Покажите, что для графа G=[V,E] с k компонентами связности верно неравенство |V|-k\leq |E|\leq \left(\begin{array}{c}|V|-k\\2\end{array}\right)

Введем обозначения |V|=n, |E|=m

Разобьем граф на компоненты связности. Для каждой компоненты, очевидно, верно неравенство m_i\geq n_i-1. Просуммировав неравенства для каждой из k компонент, получим m\geq n-k.

Оценка снизу получена.

Лемма: Граф имеет максимальное число ребер, если он имеет k-1 тривиальную компоненту связности и 1 компоненту, являющуюся полным графом. И действительно. Пусть K_{n_1}, K_{n_2} – компоненты связности, 1. Тогда при "переносе" одной вершины из K_{n_1} в K_{n_2} число ребер увеличится на n_2-(n_1-1)0 – а значит такая "конфигурация" неоптимальная, и несколькими преобразованиями сводится к указанной в лемме. А тогда максимальное число ребер в графе равно \left(\begin{array}{c}|V|-k\\2\end{array}\right) Оценка сверху получена.

Zadanie 6 (Задание 6)

Проверьте, являются ли следующие последовательности графическими, обоснуйте ответ​

Решение в приложении к ответу


Плата Очень нужна математика дискретная Задание 4).Найдите количество деревьев с n вершинами, в кото
4,8(89 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ