ответ:
пошаговое объяснение:
в прямоугольном треугольнике abc с прямым углом с проведена медиана см. найдите ab, если cm = 1 см
в прямоугольном треугольнике медиана, проведенная из прямого угла к гипотенузе, равна ее половине.
следовательно, см=ав: 2, ав=2*см=2 см
в треугольнике авс с углом с, равным 60°, проведена биссектриса см. найдите расстояние от точки м до сторон ас и вс, если см=20 см
расстояние от любой точки биссектрисы угла до его сторон одинаково для данной точки биссектрисы.
на данном во вложении рисунке угол с=60°, биссектриса см делит его на два равных угла по 30°
расстояние от точки до прямой измеряют перпендикуляром.
ме ⊥ ас, мк ⊥ вс
⊿ сем=⊿ скм по равному острому углу и общей гипотенузе.
ем=мк.
катет, противолежащий углу =30° равен половине гипотенузы.
ем=мк=20: 2=10 см
дан прямоугольный треугольник авс с прямым углом с.
найдите ∠а, если:
а)∠в=4∠а,
б)3∠в-5∠а=6°
сумма острых углов прямоугольного треугольника равна 90°⇒
а)
∠в+∠а=90°
∠в=4∠а, ⇒
4∠а+∠а=90°
5∠а=90°
∠а=90: 5=18°
б)
3∠в-5∠а=6°
∠в+∠а=90°
∠в=90°-∠а
3(90°-∠а)-5∠а=6°
270°-3 ∠а-5∠а=6°
264°=8∠а
∠а=33
х=5/12 : 2/9
х=5/12 * 9/2
х=45/24
х=1 21/24
х = 1 7/8
х = 1,875
4/15у=2/5
у=2/5 : 4/15
у= 2/5 * 15/4
у = 2/1 * 3/4
у = 1/1 * 3/2
у = 3/2
у = 1 1/2
у = 1,5