1)Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
3800 = 2 · 2 · 2 · 5 · 5 · 19
11400 = 2 · 2 · 2 · 3 · 5 · 5 · 19
Общие множители чисел: 2; 2; 2; 5; 5; 19
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (3800; 11400) = 2 · 2 · 2 · 5 · 5 · 19 = 3800
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
11400 = 2 · 2 · 2 · 3 · 5 · 5 · 19
3800 = 2 · 2 · 2 · 5 · 5 · 19
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (3800; 11400) = 2 · 2 · 2 · 3 · 5 · 5 · 19 = 11400
Наибольший общий делитель НОД (3800; 11400) = 3800
Наименьшее общее кратное НОК (3800; 11400) = 11400
2)Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
1500 = 2 · 2 · 3 · 5 · 5 · 5
4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5
Общие множители чисел: 2; 2; 5; 5; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (1500; 4000) = 2 · 2 · 5 · 5 · 5 = 500
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
4000 = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5
1500 = 2 · 2 · 3 · 5 · 5 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (1500; 4000) = 2 · 2 · 2 · 2 · 2 · 5 · 5 · 5 · 3 = 12000
Наибольший общий делитель НОД (1500; 4000) = 500
Наименьшее общее кратное НОК (1500; 4000) = 12000
3)Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
180 = 2 · 2 · 3 · 3 · 5
630 = 2 · 3 · 3 · 5 · 7
350 = 2 · 5 · 5 · 7
Общие множители чисел: 2; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (180; 630; 350) = 2 · 5 = 10
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем остальные числа. Подчеркнем в разложении меньших чисел множители, которые не вошли в разложение наибольшего числа.
630 = 2 · 3 · 3 · 5 · 7
180 = 2 · 2 · 3 · 3 · 5
350 = 2 · 5 · 5 · 7
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (180; 630; 350) = 2 · 3 · 3 · 5 · 7 · 2 · 5 = 6300
Наибольший общий делитель НОД (180; 630; 350) = 10
Наименьшее общее кратное НОК (180; 630; 350) = 6300
Пошаговое объяснение:
я мучался
сделай ответ лучшим
ВАЖНО: Округлять до сотых километра (10 м) нельзя, так как диаметр задан до десятых от тысяч километров (100 м)
Пошаговое объяснение:
1.
С = π*D = 10900 км - формула
D = 10900 : 3.14 = 34713.375 км ≈ 3471,38 км - диаметр - ответ.
2. Прямая пропорциональность.
С2 = С1 * 5/7 = 3,5 * 5/7 = 0,5*5 = 2,5 м - длина окр-ности- ответ.
3. S = π*D²/4 = π*144/4 = 36π - площадь первого круга
k = D2/D1 = 1/2 - площадь пропорциональна квадрату диаметра
S2 = k² * S = 36/4*π = 9*π - площадь второго - ответа.
или без пропорциональности.
D2 = 12 :2 = 6 см -диаметр второго
S2 = π*6²/4 = 9π - площадь второго - ответ.