1) Диагональ куба 2√3 см. Она равна а√3 (а - ребро куба). Отсюда ребро куба равно 2 см. Объём куба V = a³ = 2³ = 8 см³.
2) Сторона основания правильной четырехугольной призмы 6 см, объём призмы прямоугольной 360 см³. So = 6² = 36 см². Высота призмы равна Н = V/So = 360/36 = 10 см. Sбок = РН = 4*6*10 = 240 см². S = 2Sо + Sбок = 2*36 + 240 = 312 см².
3) Если катеты 3 и 4 см, то гипотенуза равна 5 см (свойство знаменитого египетского треугольника, проверяется по Пифагору). Отсюда высота Н призмы равна: Н= 25/5 = 5 см. Площадь So основания призмы как прямоугольного треугольника равна: So = (1/2)*3*4 = 6 см². Объём V призмы равен: V = SoH = 6*5 = 30 см³.
4) Квадрат со стороной 10 см вращается вокруг своей диагонали.Найти объём тела вращения. Тело вращения - 2 конуса с общим основанием. Радиус R основания и высота Н конуса равны половине диагонали, то есть R = Н = 5√2 см. So = πR² = 100π см². Объём V тела равен: V = 2*(1/3)SoH = (2/3)*100π*5√2 = 1000π√2/3 см³.
5) Найти объём конуса,если его радиус 4 см, а образующая наклонена под углом 45° к основанию. Из задания следует: R = H = 4 см. So = 16π см². V = (1/3)SoH = (1/3)*16π*4 = (64/3)π см³.
Примем треугольник АВС с основанием АС = 7 м. Поместим его в прямоугольную систему координат точкой А в начало и точкой С на оси Ох. Высота его будет равна: h = 2S/AC = 2*18/7 = (36/7) ≈ 5,1429 м. Любой треугольник с вершиной В на этой высоте будет иметь площадь 18 м². Для удобства решения примем точку В с абсциссой х = 3. Тогда ВЕ = h - это высота треугольника АВС. Находим длину ВС: ВС = √(ЕС² + h²) = √(16+(1296/49)) = √(2080/49) ≈ 6,515288 м. Найдём координаты точки Д по условию заданной пропорции ВД:ДС = 2:7. Хд = 3 + (4*(2/9) = 35/9 ≈ 3,88889. Уд = h*(7/9) = (36/7)*(7/9) = 4. Уравнение АД: у = (4/(35/9))х = (36/35)х ≈ 1,02857х. Координаты точки М: х = 3, у = (36/35)*3 = 108/35 = 3,085714. Теперь находим искомую площадь СЕМД. Sсемд = 18 - (18*2/9) - ((1/2)*3*3,085714) = 9,37143 м².
9y^2-(1+7y)^2=9y^2-(1^2+2*1*7y+7^2y^2)=9y^2-(1+14y+49y^2)=9y^2-1-14y-49y^2=-1-14y-40y^2
(a+11)^2-121=a^2+2*a*11+11^2-121=a^2+22a+121-121=a^2+22a
(m+n)^2-(m-n)^2=(m^2+2mn+n^2)-(m^2-2mn+n^2)=m^2+2mn+n^2-m^2+2mn-n^2=4mn
(4c-x)^2-(2c+3x)^2=(4^2c^2-2*4cx+x^2)-(2^2c^2+2*2c*3x+3^2x^2)=16c^2-8cx+x^2-4c^2-12cx-x^2=12c^2-4cx