Касательная это прямая. Уравнение прямой это y=kx+c. Коэффициент k равен производной от функции в данной точке, к чьему графику строится касательная. Значит надо брать производную от e^(x^2-5x). Берём производную от сложной функции. e^(x^2-5x)'=e'^(x^2-5x)*(x^2-5x)'=e^(x^2-5x)*(2x-5). В точке x0=5 значение производной равно: e^(5^2-5*5)*(2*5-5)=(e^0)*5=5 Значит уравнение касательной будет следующим: у=5x+c. Чтобы найти c, надо узнать значение самой функции в точке x0=5. Считаем: e^(5^2-5*5)=e^0=1 И подставляем в уравнение: 1=5*x0+с; 1=5*5+с; с=1-25; с=-24. Окончательно получаем уравнение нашей касательной y=5x-24 Вроде так как-то.
1.Чтобы доказать первое утверждение составим числовое выражение согласно условиям утверждения: В этом выражении деление на повторяется, поэтому вынесем это действие за скобку. Получим такое числовое выражение: И решим его: В ответе у нас получилось целое число. Значит можно считать утверждение "если каждое из двух чисел делится на , то и их сумма делится на .
2.Для доказательства второго утверждения составим числовое выражение соответствующее условиям утверждения: Вынесем общий делитель за скобку: Решим получившееся выражение: Так как число в ответе целое можно считать утверждение "если одно из двух чисел делится на ,то их произведение делится на " доказанным.
4*4*4=64
остается 95-64=31
ответ: 31