Радиус вписанной в правильный треугольник окружности равен отношению его стороны к 2*(корень из трёх (далее буду обозначать как -/(3))), то есть: r=a/(2*(-/3)). Следовательно, зная радиус, мы можем найти сторону: a=r*2*-/(3). a=8-/(3). Площадь S равностороннего треугольника (или правильного треугольника) равна ((a^2)*-/(3))/4. Следовательно, S=(((8-/(3))^2)*-/(3))/4. S=(64*3*-/(3))/4. S=48*-/(3). ответ: 48*-/(3) - сорок восемь корней из трёх. P. S.: чтобы было понятнее, постараюсь все вычисление прислать фотографией.
Напишем пока произвольное количество (но больше 5 - т.к. явно имеются 3 "больших" и 2 "маленьких") чисел в порядке убывания: А+Б+В+Г+Д+Е+Ж=150.
Известно, что (А+Б+В)/3=27 и (Е+Ж)/2=22.
Значит, сумма "больших чисел" А+Б+В=81 и сумма "маленьких чисел" Е+Ж=44. Тогда на "средние" числа Г...Д будет оставаться 150-81-44=25. Неизвестно, сколько этих чисел: 1, 2, 3, ...
Но, судя по тому, что В (наименьшее из "больших чисел") не больше, чем (81:3=27)-Х (и тогда два другие "большие числа" будут 27+27+Х в какой-то комбинации), а Е (наибольшее из "малых чисел") не меньше, чем (44:2=22)+У(и тогда другое "малое число" будет 22-У),
остается ЕДИНСТВЕННЫЙ вариант - "среднее число" - ОДНО...
Оно может быть = 23,24,25 или 26 (крайние значения - если А=Б=В или Е=Ж), но нас это, в принципе, не интересует. Вопрос был - "СКОЛЬКО чисел написано на доске?"
ответ: шесть (3 "больших", 2 "маленьких" и 1 "среднее").
Следовательно, зная радиус, мы можем найти сторону: a=r*2*-/(3).
a=8-/(3).
Площадь S равностороннего треугольника (или правильного треугольника) равна ((a^2)*-/(3))/4.
Следовательно, S=(((8-/(3))^2)*-/(3))/4.
S=(64*3*-/(3))/4.
S=48*-/(3).
ответ: 48*-/(3) - сорок восемь корней из трёх.
P. S.: чтобы было понятнее, постараюсь все вычисление прислать фотографией.