1) Произвольное комплексное число z в алгебраической форме: z = a + b*i Оно же в тригонометрической форме: z = r*(cos Ф + i*sin Ф) Здесь r = √(a^2 + b^2); Ф = arctg(b/a)
2) z = 1 - i a = 1; b = -1; r = √(1^2 + (-1)^2) = √2; Ф = arctg(-1/1) = -pi/4 z = √2*(cos(-pi/4) + i*sin(-pi/4))
3) Сначала представим z в обычном алгебраическом виде: Для этого умножим числитель и знаменатель на комплексно-сопряженное.
Теперь переведем его в тригонометрическую форму
Здесь нам номер 2), в котором мы уже представляли 1 - i. По формуле Муавра для степени и корня комплексного числа: z^n = r^n*(cos(n*Ф) + i*sin(n*Ф))
Задача 1. 1) 3/5 * 1/3 = 1/5 - часть мальчиков, которые играют в футбол (сократили 3 в числителе одной дроби и 3 в знаменателе другой) ответ: 1/5 часть всех детей лагеря играет в футбол. Проверка. В летнем лагере 30 детей (целое). 1) 30 * 3/5 = 30 : 5 * 3 = 18 детей - мальчики (часть целого) 2) 18 * 1/3 = 18 : 3 = 6 мальчиков играют в футбол (часть мальчиков) 3) 6/30 = 1/5 - часть детей лагеря, которые играют в футбол (дробь 6/30 сократили на 6)
Задача 2. Примем весь путь за единицу (целое) 1) 1 - 7/20 = 20/20 - 7/20 = 13/20 - оставшаяся часть пути; 2) 13/20 * 8/13 = 8/20 - часть пути, которую проделали путешественники во второй день; 3) 1 - (7/20 + 8/20) = 1 - 15/20 = 5/20 - часть пути, которую проделали путешественники в третий день; 4) 7/20 - 5/20 = 2/20 = 1/10 - часть пути, равная 36 км Находим целое по его части: 36 * 10 = 360 км - расстояние между городами. ответ: 360 км. Проверяем: 1) 360 * 7/20 = 360 : 20 * 7 = 126 км - в первый день; 2) 8/13 * (360 - 126) = 8/13 * 234 = 234 : 13 * 8 = 144 км - во второй день; 3) 360 * 5/20 = 360 : 20 * 5 = 90 км - в третий день; 126 + 144 + 90 = 360 км - расстояние между городами. 126 - 90 = 36 км - на столько меньше проехали в третий день, чем в первый.
Вот такие чертишь либо то, либо то
2*4
8*1