Zadanie 4 (Задание 4)
Найдите количество деревьев на n вершинах, в которых степень каждой вершины не больше 2.
n=1 => дерево состоит из одной вершины степени 0.
n>=2 => 1] Вершины степени 0 быть не может (иначе граф несвязный). Значит степень вершин либо 1, либо 2. 2] существует простая цепь, являющаяся подграфом дерева.
Тогда будем достраивать дерево из цепи. Ребро - простая цепь.
Алгоритм:
Изначально есть ребро <u,v>. Степени концов цепи - вершин u и v - равны 1.
Если на данном шаге число вершин в графе равно n - получен один из искомых графов, больше его не изменяем.
Если же число вершин < n, добавляем ребро.
На 1ом шаге мы можем добавить либо ребро <u,a>, либо ребро <a,v>. Без нарушения общности, добавим <u,a>. У нас все еще простая цепь. При этом у концов a и v степень 1, а у всех остальных вершин, здесь это вершина u, - 2, и к ним ребра присоединить уже нельзя. Повторяя подобные операции, будем получать на каждом шаге простую цепь.
На n вершинах можно построить ровно одну простую цепь. А значит и число искомых деревьев равно 1 .
Zadanie 5 (Задание 5)
Покажите, что для графа G=[V,E] с k компонентами связности верно неравенство
Введем обозначения
Разобьем граф на компоненты связности. Для каждой компоненты, очевидно, верно неравенство . Просуммировав неравенства для каждой из k компонент, получим
.
Оценка снизу получена.
Лемма: Граф имеет максимальное число ребер, если он имеет k-1 тривиальную компоненту связности и 1 компоненту, являющуюся полным графом. И действительно. Пусть – компоненты связности,
. Тогда при "переносе" одной вершины из
в
число ребер увеличится на
– а значит такая "конфигурация" неоптимальная, и несколькими преобразованиями сводится к указанной в лемме. А тогда максимальное число ребер в графе равно
Оценка сверху получена.
Zadanie 6 (Задание 6)
Проверьте, являются ли следующие последовательности графическими, обоснуйте ответ
Решение в приложении к ответу
а) Найдем вероятность того, что все 3 билета имеют разную ценность, т.е. 1 рубль, 3 и 5.
Кол-во всех исходов С103 = 10!/(3!*7!) = 10*9*8/6 = 120.
Кол-во благоприятных исходов 5*3*2=30
Р1=30/120=1/4
Р = 1-Р1 = 1-1/4=3/4 - вероятность того, что не все билеты имеют разную ценность, т.е. хотя бы 2 билета имеют одинаковую ценность.
Максимальное значение вероятности может равняться 1. В данном случае вероятность равна 3/4=0,75.
б) Благоприятные исходы (3 билета стоят 7 рублей):
7=1+1+5 таких исходов С52*С21 = 10*2=20
7=3+3+1 таких исходов С32*С51= 3*5=15
Кол-во всех исходов С103 = 10!/(3!*7!) = 120
Р=(20+15)/120 = 7/24
Пошаговое объяснение:
2) k/c