Площадь треугольника S=а•Н/2, где а - длина основания, а Н - высота. S треугольника МАВ = АВ• Н В треугольниках ВСМ и МДА основания ВС и АД равны. Если мы проведем через точку М линию, параллельную ВС и АД, то увидим, что кратчайшие расстояния от точки М до оснований ВС и АД, то есть высоты треугольников ВСМ (Нвсм) и МДА (Нмда) в сумме равны высоте треугольника МАВ (Нмав): Нвсм + Нмда = Нмав Но Sвсм = ВС• Нвсм Sмда = АВ• Нмда
Площадь треугольника S=а•Н/2, где а - длина основания, а Н - высота. S треугольника МАВ = АВ• Н В треугольниках ВСМ и МДА основания ВС и АД равны. Если мы проведем через точку М линию, параллельную ВС и АД, то увидим, что кратчайшие расстояния от точки М до оснований ВС и АД, то есть высоты треугольников ВСМ (Нвсм) и МДА (Нмда) в сумме равны высоте треугольника МАВ (Нмав): Нвсм + Нмда = Нмав Но Sвсм = ВС• Нвсм Sмда = АВ• Нмда
30см-(5см+5см)=20 см (это сумма двух длин)
20:2=10 см одна сторона (длина)
следовательно длина равна 10 см, ширина 5 см
Р= 2*(10+5)=30см