На основании определения функции каждому значению аргумента х из области определения R ( все действительные числа ) соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 , а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой аргументу х несколько значений, вычисли соответствующие значения функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и соедини их плавной непрерывной кривой. Эта кривая, называющаяся параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные левую и правую части (ветви параболы), в точке с координатами (0; 0) (вершине параболы) значение функции x 2 — наименьшее. Наибольшего значения функция не имеет. Вершина параболы — это точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает, а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола, но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина находится в точке с координатами (0; 3) .
Берем х га - площадь одной условной части. всего частей 4+3+5=9. 4х га - площадь первого участка 3х га - площадь второго участка 5х га -площадь третьего участка 4х*28 = 112х ц зерна собрано с первого участка 3х*28 = 84х ц зерна собрано со 2го участка 5х*28 = 140х ц зерна собрано с 3го участка по условию с 3го собрано больше, чем с первого на 84 ц. 5х-4х=84 х=84 => 84 га - площадь одной условной части таким образом, 112*84=9408 га - площадь 1го участка 84*84=7056 га - площадь 2го участка 140*84=11760 га - площадь 3го участка ответ: 9408 га, 7056 га, 11760 га.
8×5=40
40:5=8
В 8 раз больше