1)Пирамида - многогранник, основание которого — многоугольник, а остальные грани - треугольники, имеющие общую вершину.
Площадь боковой поверхности правильной шестиугольной пирамиды формула:
, где a - сторона основания, b - боковая грань) 2) SK=10 — апофема, SH=8 — высота, НК — половина ребра основания. HK=√(SK2—HK2)=√(102—82)=6, Тогда ребро АВ=12. Площадь поверхности S=4⋅(SK⋅AB/2)+AB2=4⋅(10⋅12/2)+122=384
ответ: 384
Пошаговое объяснение:
Пошаговое объяснение:
Проведем из вершины В параллелограмма высоты ВК и ВН к сторонам АД и СД.
Так как у параллелограмма длины противоположных сторон равны, то АД = ВС = 18 см, СД = АВ = 12 см.
Применим формулу площади параллелограмма.
S = АД * ВК и S = СД * ВН.
S = 18 * ВК = 144.
ВК = 144 / 18 = 8 см.
Из прямоугольного треугольника МВК, по теореме Пифагора, определим длину гипотенузы МК.
МК2 = ВК2 + МВ2 = 82 + 122 = 64 + 144 = 208.
МК = 4 * √13 см.
S = СД * ВН.
S = 12 * ВН = 144.
ВК = 144 / 12 = 12 см.
Из прямоугольного треугольника МВН, по теореме Пифагора, определим длину гипотенузы МН.
МН2 = ВН2 + МВ2 = 122 + 122 = 144 + 144 = 228.
МН = 2 * √12 см.
ответ: Расстояния от точки M до прямой AД равно 4 * √13 см, до прямой CД равно 2 * √12 см.
в круге 360 градусов. 360:4=90 градусов.
ответ: 90 градусов