1.
Натуральное число делится нацело:
на 5 если его последняя цифра 0 или 5;
на 9 если сумма его цифр делится на 9.
⋮ - знак делимости нацело, например 15⋮3 - 15 кратно 3.
1) 405; 865.
2) 405 т.к. 4+5=9, 9⋮9; 972 т.к. 9+7+2=18, 18⋮9; 2394 т.к. 2+3+9+4=18.
2.
1176 = 2³·3·7²
Подробнее смотри в приложенном файле.
3.
1) 27=3³; 36=2²·3²
НОД(27, 36) = 3² = 9.
2) 168=2³·3·7; 252=2²·3²·7
НОД(168, 252) = 2²·3·7 = 4·21 = 84.
4.
1) 11; 33=11·3
НОК(11, 33) = 11·3 = 33.
2) 9=3²; 10=2·5
НОК(9, 10) = 3²·2·5 = 9·10 = 90.
3) 18=2·3²; 12=2²·3
НОК(18, 12) = 2·3²·2 = 4·9 = 36.
5.
297 = 3³·11
304 = 2⁴·19
При разложении на простые множители видно, что общих множителей нет, значит числа взаимно простые.
6.
Натуральное число делится нацело на 3 если сумма его цифр делится на 3. Пусть неизвестная цифра это х, тогда 1+9+9+x должно делится на 3, при этом x - цифра. Получаем, что при x=2: 1+9+9+2=21⋮3; при x=5: 1+9+9+5=24⋮3; при x=8: 1+9+9+8=27⋮3. Запишем варианты чисел:
1992, 1995, 1998.
7.
Найдём НОК чисел 12 и 15.
12=2²·3; 15=3·5
НОК(12, 15) = 2²·3·5 = 4·15 = 60
Получается, что фермер мог собрать 60·k кг яблок, где k - натур. числ.
Для возможной массы яблок подходит только 60·3=180кг - ответ.
1.
Натуральное число делится нацело:
на 5 если его последняя цифра 0 или 5;
на 9 если сумма его цифр делится на 9.
⋮ - знак делимости нацело, например 15⋮3 - 15 кратно 3.
1) 405; 865.
2) 405 т.к. 4+5=9, 9⋮9; 972 т.к. 9+7+2=18, 18⋮9; 2394 т.к. 2+3+9+4=18.
2.
1176 = 2³·3·7²
Подробнее смотри в приложенном файле.
3.
1) 27=3³; 36=2²·3²
НОД(27, 36) = 3² = 9.
2) 168=2³·3·7; 252=2²·3²·7
НОД(168, 252) = 2²·3·7 = 4·21 = 84.
4.
1) 11; 33=11·3
НОК(11, 33) = 11·3 = 33.
2) 9=3²; 10=2·5
НОК(9, 10) = 3²·2·5 = 9·10 = 90.
3) 18=2·3²; 12=2²·3
НОК(18, 12) = 2·3²·2 = 4·9 = 36.
5.
297 = 3³·11
304 = 2⁴·19
При разложении на простые множители видно, что общих множителей нет, значит числа взаимно простые.
6.
Натуральное число делится нацело на 3 если сумма его цифр делится на 3. Пусть неизвестная цифра это х, тогда 1+9+9+x должно делится на 3, при этом x - цифра. Получаем, что при x=2: 1+9+9+2=21⋮3; при x=5: 1+9+9+5=24⋮3; при x=8: 1+9+9+8=27⋮3. Запишем варианты чисел:
1992, 1995, 1998.
7.
Найдём НОК чисел 12 и 15.
12=2²·3; 15=3·5
НОК(12, 15) = 2²·3·5 = 4·15 = 60
Получается, что фермер мог собрать 60·k кг яблок, где k - натур. числ.
Для возможной массы яблок подходит только 60·3=180кг - ответ.
Статья 19. Сроки назначения трудовой пенсии[Закон "О трудовых пенсиях"] [Глава V] [Статья 19]
1. Трудовая пенсия (часть трудовой пенсии по старости) назначается со дня обращения за указанной пенсией (за указанной частью трудовой пенсии по старости), за исключением случаев, предусмотренных пунктами 4 и 4.1 настоящей статьи, но во всех случаях не ранее чем со дня возникновения права на указанную пенсию (указанную часть трудовой пенсии по старости).
2. Днем обращения за трудовой пенсией (частью трудовой пенсии по старости) считается день приема органом, осуществляющим пенсионное обеспечение, соответствующего заявления и необходимых документов
4. Трудовая пенсия (часть трудовой пенсии по старости) назначается ранее дня обращения за трудовой пенсией (частью трудовой пенсии по старости), определенного пунктом 2 настоящей статьи, в следующих случаях:
1) трудовая пенсия по старости (часть трудовой пенсии по старости) - со дня, следующего за днем увольнения с работы, если обращение за указанной пенсией (указанной частью трудовой пенсии) последовало не позднее чем через 30 дней со дня увольнения с работы;