Если я правильно понимаю задание, имеется в виду следующее: Из выражения вида cos a=1 надо получить собственно a. Для этого надо взять обратную тригонометрическую функцию: cos a = 1 arccos (cos a) = arccos (1) a = arccos 1 Теперь для нахождения а можно пользоваться единичной окружностью, таблицами, калькулятором, да чем угодно) a = 2*П*N, где N=0, 1... - принадлежащее множеству натуральных чисел. Т.е. мы получили не какой-то конкретный угол, а выражение для угла а (потому что таких углов, удовлетворяющих исходному равенству, вообще говоря, бесконечное множество). Теперь для оставшихся: cos a = 1/2 arccos (cos a) = arccos 1/2 a = arccos 1/2 a = П/3+2*П*N или a=5П/3+2*П*N.
cos a = 0 arccos (cos a) = arccos (0) a = arccos 0 a = П/2 + П*N
cos a = 1/6 arccos (cos a) = arccos 1/6 a = arccos 1/6 Вот тут я, честно говоря, пасую и не помню угла с таким косинусом. Но вообще картина будет напоминать угол с cos=1/2, т.е.: число+2*П*N или (2*П-число)+2*П*N
АМ=ч,MD=20-x
BM²=BD²-MD²=169-(20-x)²=169-400+40x-x²=40x-x²-231
CN²=AC²-AN²=250-(7+x)²=250-49-14x-x²=201-14x-x²
40x-x²-231=201-14x-x²
54x=432
x=432:54
x=8
BM²=320-64-231=25⇒BM=5
S=(BC+AD)*BM/2=(7+20)*5/2=67,5см²