Трехзначных чисел всего (100 - 999) = 900 штук. Из них хоть одну четверку содержат: 1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта. 2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта. 3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант. 4) 4 A 4 (A ≠ 4) - 9 вариантов 5) A 4 4 (A ≠ 0 и 4) - 8 вариантов 6) 4 4 A - 10 вариантов По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта. p = 252 / 900 = 0,28
Условие: Найдите сумму всех трехзначных натуральных чисел n, таких, что первая и последняя цифры числа n^2 равны 1 Решение: Последняя цифра квадрата - 1, значит последняя цифра самого числа - 9 либо 1.
100<=n<=999 10000<=n^2<999999
Если n^2 пятизначное, то, учитывая, что первая цифра квадрата - 1, 10000<=n^2<=19999 100<=n<=141 => 101, 109, 111, 119, 121, 129, 131, 139, 141
Если n^2 шестизначное, то, учитывая, что первая цифра квадрата - 1, 100000<=n^2<=199999 316<n<448 319,441 и пары 32x, 33x, 34x, 35x, 36x, 37x, 38x, 39x, 40x, 41x, 42x, 43x, где x - 1,9. Сумма каждой пары даст 650, 670, ... , 870