ак построить график функции y=ctg x? Для начала рассмотрим график котангенса на интервале (0;π).
Для удобства округлим число π до целого:

Длину единичного отрезка возьмём равной двум клеточкам тетради. В этом случае числу π соответствует отрезок длиной 6 клеточек,числу π/2 — 3 клеточки, π/6 — 1 клеточка, π/4 — 1,5 клеточки, π/3 — 2 клеточки.
В область определения функции y=ctg x не входят числа

Прямые

являются вертикальными асимптотами графика котангенса, то есть график к ним стремиться, но никогда не достигнет. Асимптоты изображают пунктирными линиями.
Составим таблицу значений котангенса на промежутке (0;π/2]:
На координатной плоскости отмечаем полученные точки.
На интервале (0;π) график котангенса симметричен относительно точки (π/2;0):
Так как y=ctg x — периодическая функция с периодом T=π, график котангенса, взятый на интервале (0;π), повторяется бесконечное число вправо, на плюс бесконечность, и влево, на минус бесконечность:
Графики функций, в том числе, график котангенса, в алгебре используют при решении уравнений, неравенств и других заданий.
Длина меньшего основания трапеции равна 3 см
Пошаговое объяснение:
(К сожалению, не удалось вставить чертёж, но он достаточно простой - чертим трапецию, нижнее основание AD, верхнее ВС, проводим в ней диагонали АС и BD, проводим среднюю линию MN. Точки Х и У - середины диагоналей лежат на средней линии MN. Вот и весь чертёж. Надеюсь, не составит труда его изобразить)
Дано:
ABCD – трапеция,
АС и AD – диагонали трапеции,
Х – середина АС, Y – середина BD.
ХY = 2 см, AD= 7см
Найти: ВС – меньшее основание трапеции
1. Докажем, что отрезок, соединяющий середины диагоналей трапеции равен полуразности оснований.
MX – средняя линия треугольника АВС, следовательно, MX=BC/2
NY – средняя линия треугольника DBC, следовательно, NY=BC/2
MN = (AD+BC)/2
XY=MN – MX – NY = (AD+BC)/2 – BC/2 – BC/2 = (AD-BC)/2
XY =(AD-BC)/2 (теперь это доказано)
2. Найдём ВС:
(AD-BC)/2=XY
AD-BC=2XY
В это выражение подставим значения AD=7 см и ХУ=2 см (из условия задачи):
7 –BC=2*2
7 – BC= 4
BC = 3 (см) - длина меньшего основания трапеции
В первой стопке - х
Во второй- (х+10), раз в первой на 10меньше,значит во второй на 10 больше.
В третьей-(х-8),раз в условии на 8 больше, чем в третьей, значит в третьей на 8 меньше.
Теперь все три стопки складываем.
х+х+10+х-8=98
3х=98+8-10
3х=96
х=96:3
х=32тетр. ( в первой стопке)
Вторая стопка х+10
32+10=42 тетр (во второй стопке)
Третья стопка х-8
32-8=24 тетр.( в третьей стопке)
Проверка:
32+42+24=98
98=98