6 см
Пошаговое объяснение:
По условию, трапеция вписана в окружность, значит она равнобедренная, т.е. CD=AB (это свойство трапеции).
Центр О окружности лежит на AD - большем основании трапеции, значит, сторона AD - диаметр трапеции ABCD, а отрезок AO является радиусом трапеции.
Найдём радиус окружности:
r = D/2 = AD/2 =12/2 = 6 см
AO= r = 6 см
Отрезок ОВ = 6 см, т.к. он также является радиусом окружности.
ΔАОВ - равнобедренный, т.к. АО=ОВ=r=6 см.
В равнобедренном треугольнике углы при основании равны, поэтому ∠ОАВ=∠ОВА.
По условию, ∠А=60°. ∠А=∠ОАВ, следовательно, ∠ОВА=60°.
Найдём ∠АОВ:
∠АОВ=180°-(∠ОАВ+∠ОВА)=180°-(60°+60°)=180°-120°=60°
Получается, что ΔАОВ - равносторонний.
Это означает, что АВ=ОА=ОВ=6 см
Т.к. трапеция равнобедренная, то CD=AB=6см
Пошаговое объяснение:
Центром окружности, вписанной в треугольник, является точка пересечения его биссектрис. В равностороннем треугольнике биссектрисы, высоты и медианы совпадают. Значит, центр вписанной окружности совпадает с точкой пересечения медиан, а радиус вписанной окружности является частью медианы. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Если радиус равен 8, то вся медиана равна 7*3=24. А так так медиана совпадает с высотой, то и высота равна 21. ответ: 21
3/7 от 21 =21:7*3=9
9=9 наверное 1/1