М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Алентина
Алентина
11.07.2020 09:44 •  Математика

Пчела майя вылетела из улья,когда другая пчела уже удалилась от улья на 40 м и летела со скоростью 7 м|мин. через какое время пчела майя догонмт пчелу, если будет лететь со скоростью 9м|мин?

👇
Ответ:
z478
z478
11.07.2020
Нагонять вторую пчелу она будет со скоростью 9-7= 2 м/мин, значит догонит через 40/2= 20 минут
4,6(83 оценок)
Открыть все ответы
Ответ:
ubbdfqhdu
ubbdfqhdu
11.07.2020

Пошаговое объяснение:

. Известно, что tg(8,5rc -х) = а. Найдите значение tg(-x).

6. Известно, что sin(19,57t - х) = а и х Є 2rcj. Найдите значение cosx.

Найдиїе наименьший положительный период функции №№ 7—8.

7. Дх) = sin2 4х - cos2 4х.

8. g(x) = 0,2 sin Зх cos6x cos3x.

153

Найдите область значений функции №№ 9—10.

9. f(x) = -9sinx + 4.

10. f{x) = 0,3Х+} - 10.

11. Найдите наименьшее положительное значение аргумента, при котором график функции g{x) = 2 sinx ctgx проходит через точку, лежащую на оси абсцисс.

12. Найдите наибольшее отрицательное значение аргумента, при котором график функции h{x) = -9 cosx tgx проходит через точку оси Ох.

13. Найдите значение производной функции

/(X) = (f/^ + f/? + l)(|/7-l) в точке X0 = 2001.

14. Определите абсциссы точек, в которых угловой коэффициент' касательной к графику функции h(x) = 1 - 2sin2x равен 2.

15. При каком значении аргумента равны скорости изменения функций /(х) = -[/Зх - 10 и g(x) = У14 + 6х?

16. Найдите наибольшее положительное значение аргумента из промежутка [0; 2я], при котором скорость изменения функции /(х) = tgx не меньше скорости изменения функции g(x) = 4х + 23.

,1*1

17. Найдите нули функции g(x) =

1, если X < 3, sinx + 3, если X > 3.

18. Функция у = /(х) определена на промежутке (-6; 6). На рисунке изображен график ее производной. Найдите точки минимума функции у = /(х) на промежутке (-6; 6).

1 \

\ / I

> / 0

/ 1 X

ч у г

¦ f

У — j v*/ і і і і

154

19'. Функция у = f(x) определена на промежутке [-6; 6]. На рисунке (см. рисунок к заданию 18) изображен график ее производной. Найдите промежутки убывания функции у = f(x).

20. Найдите площадь фигуры, ограниченной линиями у = ех, у = X1 X = 2, X = 0.

21. Найдите наименьшее значение функции g{x) = log0>5(2 -х2).

22. Найдите наименьшее значение функции g(x) = 1Og1(S -х2).

23. Найдите наибольшее целочисленное значение функции

у = З У {sinx - cosx)2 + 0,25.

24. Найдите наименьшее целочисленное значение функции

у = |-V36sin2x- 12 sinx + 17.

25. Найдите наибольшее целочисленное значение функции

ос оcosAxcos3* + sin4*sin3:r- 2 у = ZO о

26. Найдите наибольшее целочисленное значение функции

4 о о sinx sin 2х + cosx cos 2х — 3

г/ = Io Z

27. При каком значении т функция у = |^5х2 + тх - 3 имеет минимум в точке X0 = 1,3?

28. При каком значении т функция у = ]/тх2 + 6х - Г имеет максимум в точке X0 = 3?

29. Найдите все значения а, при которых функция

у = |/бх2 - Зах+ 1-а имеет минимум в точке X0 = —2,5.

30. Найдите все значения а, при которых функция

у = ^-6х2 + (3 + а)X + 5 - а 1

имеет максимум в точке X0 = -g.

31. При каком наибольшем отрицательном значении а функция у = sin^25x + -щ-) имеет максимум в точке X0 = я?

32. При каком наименьшем положительном значении а функция у = cos^24x + —5.^ имеет максимум в точке X0 = я?

4,8(96 оценок)
Ответ:
pavdora073539
pavdora073539
11.07.2020
Каноническое уравнение:
 а) эллипса при его параметрах ε= 3/5, A(0;8).
Уравнение эллипса \frac{x^2}{a^2} + \frac{y^2}{b^2}=1.
Координаты точки А лежат на оси Оу - это параметр в = 8.
Эксцентриситет эллипсa e характеризует его растяженность и определяется отношением фокального расстояния c к большой полуоси a. Для эллипсa эксцентриситет всегда будет 0 < e < 1.
е = с/а, отсюда с = е*а.
Но с² = а² + в². Заменим а² + в² = е²а², откуда получаем а = в/(√1-е²).
Находим значение а = 8/(√1-(3/5)²) = 8/(√16/25) = 8*5/4 = 10.
ответ: уравнение эллипса \frac{x^2}{10^2}+ \frac{y^2}{8^2}=1.

б) гиперболы с двумя точками A( √6; 0), B(-2√2; 1).
Точка А даёт координаты вершины правой ветви.
Подставим координаты точки В в уравнение гиперболы \frac{x^2}{a^2}- \frac{y^2}{b^2}=1.
8/6 - 1/b² = 1.
8b² - 6 - 6b² = 0.
2b² = 6.
b = +-√3.
Теперь составим уравнение гиперболы: 
\frac{x^2}{6}- \frac{y^2}{3} =1.

в) параболы с уравнением директрисы Д: у = 9.
Положительный знак этого параметра говорит, что парабола имеет ветви вниз. Её уравнение х² = -2ру.
Уравнение директрисы у = р/2, отсюда р = 2у = 2*9 = 18.
Тогда уравнение параболы х² = -2*18*у.
4,7(72 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ