Рисунок прикреплен.
Дано: конус, ВС=12 см, ∠НСВ=30°
Найти: объем конуса
Решение: по условию образующая конуса наклонена к плоскости под углом в 30°. Это значит, что угол между образующей и радиусом основания конуса 30°.
Из вершины конуса опустим высоту. Обозначим её ВН.
ΔВНС прямоугольный.
У него известна гипотенуза ВС=12 и ∠НСВ=30°.
В прямоугольном треугольнике катет, лежащий напротив угла в 30° в два раза меньше гипотенузы.
По теореме Пифагора найдем второй катет ΔВНС. Он же является радиусом основания конуса.
Объем конуса вычисляется по формуле: , где R - радиус основания, h - высота конуса.
ответ: 216π см³
Правила действий с нулем: деление , если число отлично от нуля; деление на ноль не определено.
При умножении и делении чисел выполняется следующее правило: если перемножаются или делятся числа одного и того же знака, то результатом будет положительное число; умножение или деление чисел разного знака дают в результате отрицательное число. Например, , , ,