На одной барже в город доставили 52 900 досок, а на другой- 74 600 досок. в первый день на склады перевезли 2/5 всех досок а во второй день - 3/10 всех досок. сколько всего досок перевезли на склады за оба дня?
1)52900+74600=127500(досок)-всего; 2)127500÷5×2=51000(дос.)-перевезли в 1й день; 3)127500÷10×3=38250(дос.)-перевезли во 2й день; 4)51000+38250=89250(дос.)-перевезли на склады за оба дня
Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле:
Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Подставить предельное значение х=2. Получим отношение 0/0. Такое отношение называется неопределенность 0/0. Чтобы раскрыть эту неопределенность необходимо числитель и знаменатель разложить на множители, сократить на множитель предел которого равен 0. Вычислить предел полученного выражения. Разложение на множители: X^2-4=(x-2)*(x+2) x^2+3x-10 =(x-2)*(x+5) квадратные скобки не нужны, отделаю числитель и знаменатель.. =0/0. неопределенность =Lim x->2[(x-2)*(x+2)]/[(x+5)*(x-2)]=lim x->2 [(x+2)*/(х+5)]=(2+2)/(2+5)=4/7
2)127500÷5×2=51000(дос.)-перевезли в 1й день;
3)127500÷10×3=38250(дос.)-перевезли во 2й день;
4)51000+38250=89250(дос.)-перевезли на склады за оба дня