Пошаговый ответ:
Представим треугольники EOM и ENP.
а) Так как EO = EN, а EP = EM, то вышеупомянутые треугольники EOM и ENP равны по первому признаку(угол ∡E для треугольников общий, смежные с ним стороны EP и EN соответственно равны сторонам EM и EO).
Значит стороны MO и PN равны.
б) Так как ΔEOM = ΔENP(это мы подтвердили выше), значит ∠EPN = ∠EMO. В задаче указано, что EP = EM. Значит треугольник EPM равнобедренный, и углы ∡P и ∡M равны.
Теперь, зная, что ∡P = ∡M и ∠EPN = ∠EMO, можно с уверенностью сказать, что ∠MPN = ∠PMO. Значит треугольник PML равнобедренный, значит, LP = LM.
е-4шт
всего-? шт
решение:
1)10+4=14 (шт)- всего
ответ всего 14 штук тополя и елей...
это вся задача так и перепишите