√(x-3)-2=0 или x-a=0 √(x-3)=2 или х=а х-3=4 или х=а х=7 или х=а
получается, что данное уравнение может иметь максимум два корня, один из которых 7, а второй "а". 1)Чтобы решение было единственным, нужно, чтобы два этих корня были равны, то есть а=7
2)также единственный корень может быть при учете ОДЗ:
произведение равно нулю, когда хотя бы один из множителей равен нулю и ПРИ ЭТОМ ОСТАЛЬНЫЕ МНОЖИТЕЛИ ИМЕЮТ СМЫСЛ.
ОДЗ: x≥3
второй корень: x=a, Если х будет меньше трёх ( соответственно а будет меньше трёх ), то этот корень не будет удовлетворять ОДЗ и останется только корень х=7
Значит, чтобы корень был единственным, нужно, чтобы а<3
нас интересует интервал а∈(0;9), значит а может равняться 1 и 2
∠А=65°
Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180°.
Отсюда следует, что вписать в окружность можно только равнобокую трапецию.
Трапеция ABCD- равнобедренная.
Рассмотрим параллельные прямые ВС , АD и секущую АС,
∠АСВ=∠CAD - как накрест лежащие углы,
∠СВD=∠АСВ -как равные углы при основе равнобедренного треугольника ВОС( точка О- точка пересечения диагоналей трапеции)
∠В=80°+35°=115°
Свойства трапеции
Сумма углов, прилежащих к боковой стороне трапеции, равна 180∘
∠А+∠В=180° → ∠А=180°-∠В=180°-115°=65°
Вариант 2
∠CAD- вписанный, он опирается на дугу ∪ СD
так как СD=AB, то ∠АСВ=∠CAD=35°,
ΔАОС- равнобедренный, ∠АСВ=∠СВD=35°,∠ВОС=180°-2*35°=110°( по теореме о сумме трёх углов треугольника)
∠АОВ=180°-∠ВОС=180°-110°=70°( как смежные углы)
в ΔАОВ ∠ВАО=180°-80°-70°=30°
∠А=∠ВАО+∠CAD=30°+35°=65°