a) наибольшее 36 и наименьшее 9
б) наибольшее 49 и наименьшее 1
в) наибольшее 81 и наименьшее 0
г) наибольшее 100 и наименьшее 0
Пошаговое объяснение:
Парабола y=x² на интервале (-∞;0) строго убывает, а на интервале (0;+∞) строго возрастает. Поэтому на промежутках содержащих значение х=0 наименьшее значение функции всегда 0, а наибольшее значение функции определяется в граничных точках.
В промежутках не содержащих значение х=0 наибольшее и наименьшее значения функции определяется в граничных точках.
а) [3; 6] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(3)=3²=9 и y(6)=6²=36
б) [-7; -1] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(-7)=(-7)²=49 и y(-1)=(-1)²=1
в) [-2; 9] содержит х=0, поэтому наибольшее значение функции определяется среди y(-2)=(-2)²=4 и y(9)=9²=81, а и наименьшее значение функции равно 0
г) [-10; 4] содержит х=0, поэтому наибольшее значение функции определяется среди y(-10)=(-10)²=100 и y(4)=4²=16, а и наименьшее значение функции равно 0
Для начала, сперва необходимо выставить 2 параллельных ряда учеников, в каждом из которых будет по 6 человек.
Таким образом мы сформируем 2 ряда по 6 человек в каждом, а общее количество учеников будет равно:
6 * 2 = 12 учеников.
Затем необходимо поставить еще один ряд учеников состоящий из 4 человек между этими двумя рядами в любой из 6 образовавшихся точек.
Полученные ряды будут иметь форму буквы П, N или Н, где 2 ученика с каждого из параллельных рядов будут являться общими для центрального ряда.
2)10+18=28(ябл)- всего.