Два зайца и пять кроликов едят морковь со скоростью 1/8 тарелки в секунду: 2z + 5k = 1/8.
Семь зайцев и четыре кролика едят морковь со скоростью 1/4 тарелки в секунду: 7z + 4k = 1/4.
8 * (2z + 5k) = 1
4 * (7z + 4k) = 1
16z + 40k = 28z + 16k
24k = 12z
2k = z
16z + 20z = 1
36z = 1
z = 1/36 тарелки в секунду
32k + 40k = 1
72k = 1
k = 1/72 тарелки в секунду
z + 2k = 1/t тарелки в секунду
t = 1 : (z + 2k)
t = 1 : (1/32 + 2 * 1/72) = 1 : (1/32 + 1/32) = 1 : 2/32 = 32/2 = 18
ответ: один заяц и два кролика схрумкают тарелку моркови за 18 секунд.
Если n соответствует неравенству 25^n=2, то можно сказать, не прибегая к логарифмам, что n<1/2, но так как ближайшее число, являющееся степенью двойки это 16=2^4 то n>1/4, => 1/4<n<1/2
В связи с этим мы можем приблизительно сравнить числа, подставив граничные значения n:
При n=1/2: 125^(1/2) > √6, так как у обоих радикалов одинаковая степень, но больше будет тот, чье основание больше
При n=1/4: 125^(1/4) > √6
Допустим, 125^(1/4)=√(√(125))=√(10*)
Здесь число 10* означает число, большее десяти, так как √100=10, => √125>10
Теперь мы можем сравнить числа: 125^n=√10* > √6
Неравенство доказано
1/5 кг = 1000 г:5= 200 г
250+200 = 450 г во второй коробке
450+250= 700 г в двух коробках