Даны множества а,в,с. укажите характеристическое свойство множеств аuв, а∩с, а\в, а ∩ (в\с): а – множество трапеций; в – множество параллелограммов; с – множество четырехугольников, имеющих прямой угол.
A∪b=a+b (5 трапеций и 5 параллелограм всего к примеру , тогда объедиеним множеств будет 10 фигур). a∩c=a*b (если 5 трапеций и 5 четырехугольников , то пересечением будет 25 фигур) a/b=a-b (аналогично) a∩(b/c)=a*(b-c) (аналогично)
1) Предположим что у каждого ученика дни рождения в разные месяцы. Таких учеников будет 12. Значит у 28-12=16 учеников дни рождения попадут тоже на один из 12 месяцев. Допустим у следующих 12 опять дни рождения в разные месяцы Значит, в одном месяце уже как минимум 2 ученика будут праздновать день рождения. Но у нас остались еще 28-24=4 ученика. У них д/р может быть в разных месяцах или даже в одном.. и таким образом найдется месяц в котором будет как минимум 3 именинника.
2) Если предположить что у одноклассников дни рождения не в каждом месяце.. Тогда один месяц (или более) остается без именинника и рассуждая подобным образом мы убедимся, что найдется месяц, в котором будет как минимум 3 именинника.
1) Предположим что у каждого ученика дни рождения в разные месяцы. Таких учеников будет 12. Значит у 28-12=16 учеников дни рождения попадут тоже на один из 12 месяцев. Допустим у следующих 12 опять дни рождения в разные месяцы Значит, в одном месяце уже как минимум 2 ученика будут праздновать день рождения. Но у нас остались еще 28-24=4 ученика. У них д/р может быть в разных месяцах или даже в одном.. и таким образом найдется месяц в котором будет как минимум 3 именинника.
2) Если предположить что у одноклассников дни рождения не в каждом месяце.. Тогда один месяц (или более) остается без именинника и рассуждая подобным образом мы убедимся, что найдется месяц, в котором будет как минимум 3 именинника.