М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daa86
daa86
25.07.2021 00:44 •  Математика

Маша собрала за 2 мин 12365 яблок а таня на 896453 яблок больше сколько они собрали вместе

👇
Ответ:
LEXUS2705
LEXUS2705
25.07.2021
Маша собрала-12365 (Ябл.)
Таня собрала-12365+896453=908818 (Ябл.)
Таня и Маша собрали всего-12365+908818=921183(Яб)
ответ:921183 яблок всего собрали Таня и Маша.
4,5(59 оценок)
Открыть все ответы
Ответ:
Flylama
Flylama
25.07.2021
1.  наливаешь воду в 16-литровое ведро  и переливаешь всё в  15-литровое. остается 1 литр. затем  выливаешь всё из  15-литрового и выливаешь в него 1 литр, который оставался в 16 литровом.2. потом снова  набираешь 16-литровое ведро и переливаешь всё в  15-литровое. сейчас в 16-литровом  осталось  2 литра воды (ведь в 15-литровом ведре уже есть 1 литр воды). выливаешь из 15-литрового всё и заливаешь туда 2 литра из 16-литрового.3. повторяешь так ещё несколько раз, пока не накопится 8 литров.
4,4(87 оценок)
Ответ:
Juliyabelyakova
Juliyabelyakova
25.07.2021
Ясно, что при n=2k система имеет решение a=3^k, b=0. Покажем, что других решений нет.

Пусть ни одно из чисел a и b не делится на 3. Покажем, что если число имеет остаток 1 или 2 при делении на 3, то квадрат этого числа имеет остаток 1 при делении на 3. Действительно, пусть a=3k+1, тогда a²=9k²+6k+1, если a=3k+2, то a²=9k²+18k+4, в обоих случаях остаток равен 1. Но сумма двух чисел с остатком 1 при делении на 3 не может нацело делиться на 3, получили противоречие.

Теперь рассмотрим случай, когда хотя бы одно из чисел a и b делится на 3. Если только одно число делится на 3, то сумма квадратов не будет делиться на 3, то есть, такой вариант невозможен. Остается случай, когда на 3 делятся оба числа. Пусть a=3^xp^2, b=3^yq^2, где p и q - натуральные числа, не делящиеся на 3. Ясно, что x<n, y<n. Если x=y, то, разделив обе части на 3^x, получим уравнение p^2+q^2=3^{n-x}. Поскольку числа p и q не делятся на 3, а величина n-x больше 0, это уравнение корней не имеет. Наконец, рассмотрим случай, когда x≠y, в силу симметрии можно считать, что x<y. Разделив уравнение на 3^x, имеем p^2+3^{y-x}q^2=3^{n-x}. Первое слагаемое не делится на 3, второе и третье делятся, получили противоречие.

Таким образом, уравнение имеет решение лишь при четных n. Следовательно, оно имеет 515 решений, меньших 1031.
4,4(60 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ