1)Т.к основание круга=36=}радиус=6 2)Т.К ДУГА=60=} УГОЛ сечения=120=} углы в треугольнике, который лежит в основание круга по 30 3 проводим перпендикуляр из центра к прямой, содержащие в треугольнике и соединяющией радиус 4 т.к угол 30 отсюда перпендикуляр = 3( 1/2 гипотезы) 5 отрезок соединяющий радиусы равен 2 корень (9+36)=6корней из пяти. 6.т.к угол между основанием и образующих =45 =} высота =радиусу=6 =} образующая = корень из (36+36)= 6корней из 2 7) теперь мы знаем все стороны треугольника( сечение, которое нужно найти) 6 корней из 2,6 корней из 2 и 6 корней из 5 Теперь по формуле Герона вычисляем площадь
Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.
если 3х-у= - 0,8, то
5*( -0,8)= -4