Задачи на движение обычно содержат следующие величины: t - время, V- скорость, S - расстояние.
Есть ряд равенств, котрые их связывают: S= V•t; t = S:V ; V = S:t
Нам дана скорость первого поезда – 90 км/ч. Необходимо найти его длину (то есть S). Время (t общ.) = 1 минута = 1/60ч.
Скорость второго поезда (V) – 30 км/ч. Длина (S) = 600м. = 0.6км.
Скорость сближения поездов равна V = 90 – 30 = 60 (км/ч) или 1 км/мин. Следовательно, за 1 минуту пассажирский поезд сместится относительно товарного на 1 км. При этом он преодолеет расстояние, равное сумме длин поездов. S п. + 0.6 = 60•1/60.
S п.= 1- 0.6 = 0.4(км.)= 400м. Поэтому длина пассажирского поезда равна 400 м.
ответ: 400.
Пошаговое объяснение:
вот
а)1)Находим производную функции f(x): f'(x)=3x^2-6x;
2)Приравниваем производную к нулю: 3х^2-6x=0 и определяем стационарные точки:
3x(x-2)=0 x1=0 x2=2
3) Определяем на числовой прямой знаки, от минус бесконечности до 0 знак +(числаа подставляем не в уравнение, а в производную), от 0 до 2 знак -, от 2 до плюс бесконечности знак +. Значит функция убывает на тех промежутках, где знак минус, а возрастает,где знак плюс.
б) Определяем наибольшее и наименьшее значение функции. находим значение функции при x=-2 и x=1 и в стационарных точках, т.е 0 и 2
при х=0, у=1, при х=2 у=-3, при х=-2 у=-19, при х=1 у=-1
Значит у наибольшее 1, у наименьшее -19.