М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ankateren
ankateren
19.11.2021 16:09 •  Математика

На какое число нужо умножить разность чисел 415и327чтобы получилось715

👇
Ответ:
Flylama
Flylama
19.11.2021
Составим уравнение
х*(415-327)=715
х*88=715
х=715:88
х=8,125
4,4(87 оценок)
Открыть все ответы
Ответ:
miloft
miloft
19.11.2021

{

Вероятностью (вероятностной мерой) называется мера (числовая функция) {\displaystyle \mathbf {P} }\mathbf {P} , заданная на множестве событий, обладающая следующими свойствами:

Неотрицательность: {\displaystyle \forall A\subset X\colon \mathbf {P} (A)\geqslant 0}\forall A\subset X\colon {\mathbf  P}(A)\geqslant 0,

Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий; другими словами, если {\displaystyle A_{i}A_{j}=\varnothing }A_{i}A_{j}=\varnothing  при {\displaystyle i\neq j}i\neq j, то {\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}{\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}.

Конечность (ограниченность единицей): {\displaystyle \mathbf {P} (X)=1}{\mathbf  P}(X)=1,

В случае если элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.

Вероятностная мера может быть определена не для всех подмножеств множества {\displaystyle X}X. Предполагается, что она определена на некоторой сигма-алгебре {\displaystyle \Omega }\Omega  подмножеств[6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность {\displaystyle (X,\Omega ,P)}(X,\Omega ,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным Свойства вероятности

Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности.

1) вероятность невозможного события (пустого множества {\displaystyle \varnothing }\varnothing ) равна нулю:

{\displaystyle \mathbf {P} \{\varnothing \}=0;}{\mathbf  {P}}\{\varnothing \}=0;

Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю.

2) если событие A включается («входит») в событие B, то есть {\displaystyle A\subset B}A\subset B, то есть наступление события A влечёт также наступление события B, то:

{\displaystyle \mathbf {P} \{A\}\leqslant \mathbf {P} \{B\};}{\mathbf  {P}}\{A\}\leqslant {\mathbf  {P}}\{B\};

Это следует из неотрицательности и аддитивности вероятностной меры, так как событие {\displaystyle B}B, возможно, «содержит» кроме события {\displaystyle A}A ещё какие-то другие события, несовместные с {\displaystyle A}A.

3) вероятность каждого события {\displaystyle A}A находится от 0 до 1, то есть удовлетворяет неравенствам:

{\displaystyle 0\leqslant \mathbf {P} \{A\}\leqslant 1;}0\leqslant {\mathbf  {P}}\{A\}\leqslant 1;

Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в {\displaystyle X}X, а для {\displaystyle X}X аксиоматически предполагается {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

4) вероятность наступления события {\displaystyle B\setminus A}B\setminus A, где {\displaystyle A\subset B}A\subset B, заключающегося в наступлении события {\displaystyle B}B при одновременном ненаступлении события {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{B\setminus A\}=\mathbf {P} \{B\}-\mathbf {P} \{A\};}{\mathbf  {P}}\{B\setminus A\}={\mathbf  {P}}\{B\}-{\mathbf  {P}}\{A\};

Это следует из аддитивности вероятности для несовместных событий и из того, что события {\displaystyle A}A и {\displaystyle B\setminus A}B\setminus A являются несовместными по условию, а их сумма равна событию {\displaystyle B}B.

5) вероятность события {\displaystyle {\bar {A}}}{\bar  {A}}, противоположного событию {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{{\bar {A}}\}=1-\mathbf {P} \{A\};}{\mathbf  {P}}\{{\bar  {A}}\}=1-{\mathbf  {P}}\{A\};

Это следует из предыдущего свойства, если в качестве множества {\displaystyle B}B использовать всё и учесть, что {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий {\displaystyle A}A и {\displaystyle B}B равна:

{

4,8(100 оценок)
Ответ:
iralubov
iralubov
19.11.2021
Обоснована концепция почвенных ресурсов как неотъемлемой части биологических ресурсов наземных экосистем. Показано, что в современную эпоху, характеризующуюся усилением деградации биологических систем, связанной преимущественно с ухудшением условий местообитаний, химическим, физическим и биологическим загрязнением основных сред жизнеобеспечения и воспроизводства (вода, воздух, пища), экономическое значение почвенных ресурсов следует рассматривать шире, чем
узкоутилитарное понятие «земельные ресурсы». Почва, являясь структурообразующим элементом наземных ландшафтов, должна рассматриваться не только как земельный ресурс, но и как ресурс биологический, неотъемлемо отвечающий за устойчивое гармоничное выполнение главных циклов биокруговорота. Без нормального функционирования почв невозможно поддержание оптимального состояния биосферы, гидросферы, литосферы, обеспечивающих устойчивое функционирование живых организмов, восстановление их репродуктивного потенциала и разнообразие.
Основные положения новой фундаментальной научной концепции вытекают из базового учения о функциях почв в биосфере, разрабатываемого под руководством академика Г.В.Добровольского.
До сих пор в обыденном сознании почвенные ресурсы отождествляются с земельными ресурсами, что ограничивает представление о почвенных ресурсах только сельскохозяйственными задачами и земельными отношениями. Даже в рамках собственно почвоведения до сих пор практически не делается различий между «земельными» и «почвенными» ресурсами. Эти понятия зачастую употребляются как синонимы, а учет почвенных ресурсов ведется в терминах площадной оценки почвенных разностей. Вместе с тем, в Земельном Кодексе РФ (2001), понятия «земельных ресурсов» не существует вообще, а используется понятие земельный участок: «Земельный участок как объект земельных отношений — часть поверхности земли (в том числе почвенный слой), границы которой описаны и удостоверены в установленном порядке.»
4,8(69 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ