Длина одной стороны квадрата составляет одну четвёртую его периметра. Длина трех сторон составляет три четвертых периметра.
С вершины одного из углов прямоугольника проведена биссектриса ,
которая делит его диагональ на отрезки, разница между которыми 5 см. Вычислить периметр прямоугольника, если его стороны относятся, как 3:4.
ответ: 70 см
Пошаговое объяснение: Пусть стороны прямоугольника a и b
a:b =3:4 ⇒ a =3b/4. Диагональ прямоугольника : d =√(a²+b²)=√( (3b/4)²+b²) =5b/4. b =4d/5 ; a = 3d/5
P= P(ABCD) =2(a+b) = 2(3d/5+4d/5) =2*7d/5 =14d/5 .
d₁ : d₂ = a: b ( свойство бисс. внутреннего угла треугольника )
d₁ : d₂ = 3 : 4 ;
* * * d₁ =3d₂/4 ; d₁+d₂ = 7d₂/4 =d ; d₂=4d/7 ; d₁ =3d/7 * * *
4d/7 -3d/7 = 5 ⇒ d =35
P = 14d/5 =14*35 /5 =70 (см) .
1) Проведём отрезок FE параллельно основаниям трапеции ( FE || BC || AD ), тогда
BF = AF , FE || BC || AD →
FE – средняя линия трапеции, CE = ED
угол EFD = угол ADF – как накрест лежащие углы при параллельных прямых FE и AD и секущей FD
По условию угол EDF = угол ADF
Значит, угол EFD = угол EDF →
∆ FED – равнобедренный,
FE = ED = 1/2 × CD = 1/2 × 13 = 6,5
Средняя линия трапеции вычисляется по формуле:
EF = 1/2 × ( BC + AD )
6,5 = 1/2 × ( 4 + AD )
13 = 4 + AD
AD = 9
2) Теперь проведём BK || CD →
четырёхугольник BCDK – параллелограмм ( BK || CD , BC || KD )
По свойству параллелограмма
ВС = KD = 4 , BK = CD = 13 → AK = AD – KD = 9 - 4 = 5
Рассмотрим ∆ ВАК:
АВ = 12 , АК = 5 , ВК = 13
Применим к этому треугольнику теорему Пифагора:
ВК² = АВ² + АК²
13² = 12² + 5²
169 = 144 + 25
169 = 169
Значит, по теореме, обратной теореме Пифагора получаем, что
∆ ВАК – прямоугольный, угол ВАК = 90°
Из этого следует, что отрезок АВ совпадает с высотой ВН трапеции , АВ = ВН = 12
Следовательно, трапеция АВСD прямоугольная с прямым углом А
Площадь трапеции вычисляется по формуле:
S = 1/2 × ( a + b ) × h
где а, b – основания трапеции, h – высота трапеции
S abcd = 1/2 × ( ВС + AD ) × АВ = EF × AB = 6,5 × 12 = 78
ОТВЕТ: 78
у квадрата 4 стороны,значит одна сторона составляет 1/4 часть периметра,а три стороны составляют 3/4 периметра