Правильная четырехугольная пирамида
.
(см²).
(см).
- сторону основания.
Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:
, где
- сторона основания и
- апофема (высота боковой грани, проведенная из вершины).
Попробуем выразить
через
(сторону основания) и
(см) (высоту пирамиды).
Рассмотрим прямоугольный
(где
- середина
). В нем
(см), а
(см) (как половина стороны квадрата, равной
см).
По теореме Пифагора:

Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что
- неотрицательное):

Пусть
:

Второй корень нам не подходит по причине отрицательности. Значит:

Задача решена!
ответ:
или около
(см).
2+а+2-10=18-6а. 6y-3+18y-24=83+5y-15
а+6а=18+10-2-2. 6y+18y-5y=83-15+24+3
7а=24 19y=95
а=24:7 y=95:19
а=3 y=5