У куба всего шесть граней. Значит, имеется три пары противоположных граней, где в каждой паре числа на гранях отличаются в 1,5 раза Пусть в первой паре это числа а и 1,5а, во второй паре в и 1,5в, в третье паре с и 1,5с Сумма чисел в вершинах равна сумме чисел на гранях. Приравняем эту сумму числу 2016. а + 1,5а + в + 1,5в + с + 1,5 с = 2016 а + в + с + 1,5а + 1,5в + 1,5с = 2016 а + в + с + 1,5(а + в + с) = 2016 (а + в + с)•(1 + 1,5) = 2016 (а + в + с) • 2,5 = 2016 а + в + с = 2016 : 2,5 а + в + с = 806,4 Этого не может быть, поскольку в вершинах записаны натуральные числа, следовательно их сумма на каждой из гранях также является натуральным числом, и, соответственной сумма чисел на любых гранях также должна быть натуральным числом и не может быть дробью. ответ: нет, не может.
1) у=3+2х-x²; производная: y ' = 2-2x; 2-2x=0; x = 1; y(1)=3+2*1-1² = 4; Функция не является монотонной. Одна точка экстремума: x = 1; у=4; производная в этой точке меняет знак с + на - ; это точка максимума функции. Функция возрастающая на интервале x є (-∞;1). Функция убывающая на интервале x є (1; +∞). строим график: пересечение с осью OY: 3+2х-x²=0; x1=-1; x2=3; строим по точкам: x= -2; y= -5; x= -1; y= 0; x= 0; y= 3; x= 1; y= 4; x= 2; y= 3; x= 3; y= 0; x= 4; y= -5;
2) у=3х²-x³; производная: y ' = 6x -3x²; 6x -3x²=0; x1 = 0; x2 = 2; y(0)= 3х²-x³ = 0; y(2)= 3*2²-2³ = 4; Функция не является монотонной. Две точки экстремума: (0; 0) производная в этой точке меняет знак с - на + ; это точка локального минимума функции; и (2; 4) производная в этой точке меняет знак с + на - ; это точка локального максимума функции. Функция убывающая на интервале x є (-∞; 0) U (2; +∞). Функция возрастающая на интервале x є (0; 2). строим график: пересечение с осью OY: 3х²-x³=0; x1=0; x2=3; строим по точкам: x= -1; y= 4; x= 0; y= 0; x= 1; y= 2; x= 2; y= 4; x= 3; y= 0;
3) у=6х+x³; производная: y ' = 3x²+6; 3x²+6 = 0; Нет корней. производная всегда больше нуля. Функция является монотонной. Функция возрастающая на интервале x є (-∞; +∞). строим график: пересечение с осью OY: 6х+x³=0; x=0; строим по точкам: x= -1; y= -7; x= -0.75; y= -4.92; x= -0.5; y= -3.13; x= -0.25; y= -1.52; x= 0; y= 0; x= 0.25; y= 1.52; x= 0.5; y= 3.13; x= 0.75; y= 4.92; x= 1; y= 7;
Значит, имеется три пары противоположных граней, где в каждой паре числа на гранях
отличаются в 1,5 раза
Пусть в первой паре это числа а и 1,5а,
во второй паре в и 1,5в,
в третье паре с и 1,5с
Сумма чисел в вершинах равна сумме чисел на гранях. Приравняем эту сумму числу 2016.
а + 1,5а + в + 1,5в + с + 1,5 с = 2016
а + в + с + 1,5а + 1,5в + 1,5с = 2016
а + в + с + 1,5(а + в + с) = 2016
(а + в + с)•(1 + 1,5) = 2016
(а + в + с) • 2,5 = 2016
а + в + с = 2016 : 2,5
а + в + с = 806,4
Этого не может быть, поскольку в вершинах записаны натуральные числа, следовательно их сумма на каждой из гранях также является натуральным числом, и, соответственной сумма чисел на любых гранях также должна быть натуральным числом и не может быть дробью.
ответ: нет, не может.