Обозначим: h - высота цилиндра, R - радиус его основания Объем бака:
Площадь полной поверхности бака:
В качестве независимой переменной выберем радиус основания R. Выразим h через R при заданном объеме V:
Исследуем площадь поверхности S(R) на экстремум Подставляем h:
Вычисляем производную:
Находим стационарные точки:
Так как при переходе через это значение R производная меняет знак с минуса на плюс, то данное значение R соответствует минимальной площади поверхности S(R).
Вычислим высоту найденного цилиндра:
Подставим значение объема из условия:
Таким образом, площадь поверхности цилиндра с объемом 6,28 м³ будет минимальной при высоте h = 2 м и радиусе основания R = 1 м. Осевое сечение такого цилиндра представляет собой квадрат.
1. Пусть х - сторона исходного квадрата х² - его площадь, которая составляет 100% 30% + 100% = 130% 130% = 1,3 1,3х - новая сторона (1,3х)² = 1,69х² - новая площадь 1,69х² - х² = 0,69х² Т.к. х² составляет 100%, то подставив, получим: 0,69 ·100% = 69% ответ: на 69% увеличится 2. Пусть х - сторона исходного квадрата х² - его площадь, которая составляет 100% 100% -10% = 90% 90% = 0,9 0,9х - новая сторона (1,9х)² = 0,81х² - новая площадь х² - 0,81х² = 0,19х² Т.к. х² составляет 100%, то подставив, получим: 0,19 ·100% = 19% ответ: на 19% уменьшится