См. решение.
Пошаговое объяснение:
1) Область определения - это значения х, при которых данная функция существует. Разрывов нет. Левая ветвь уходит вниз до бесконечности. Правая ветвь уходит вверх до бесконечности. ответ: х (-∞, + ∞).
2) Аналогично: при этом игрек принимает значения от -∞ до + ∞. ответ: у (-∞, + ∞).
3) Нули функции - это точки пересечения графика функции с осью х. Таких точек 3, они выделены на графике красным цветом:
х1 = -6, х2 = - 1, х3 = 5.
Нули функции разбивают график на промежутки знакопостоянства.
4) На промежутке от -∞ до то х = -6 функция отрицательна (график находится под осью х) ;
на промежутке от х = -6 до х = - 1 функция положительна (график находится над осью х);
на промежутке от х = - 1 до х = 5 функция отрицательна;
на участке от х = 5 до + ∞ функция положительна.
См. решение.
Пошаговое объяснение:
1) Область определения - это значения х, при которых данная функция существует. Разрывов нет. Левая ветвь уходит вниз до бесконечности. Правая ветвь уходит вверх до бесконечности. ответ: х (-∞, + ∞).
2) Аналогично: при этом игрек принимает значения от -∞ до + ∞. ответ: у (-∞, + ∞).
3) Нули функции - это точки пересечения графика функции с осью х. Таких точек 3, они выделены на графике красным цветом:
х1 = -6, х2 = - 1, х3 = 5.
Нули функции разбивают график на промежутки знакопостоянства.
4) На промежутке от -∞ до то х = -6 функция отрицательна (график находится под осью х) ;
на промежутке от х = -6 до х = - 1 функция положительна (график находится над осью х);
на промежутке от х = - 1 до х = 5 функция отрицательна;
на участке от х = 5 до + ∞ функция положительна.
Y = 0 ; 1,5x = - 9 ; x = - 6
X = 0 ; y = 9
ответ ( 0 ; 9 ) ; ( - 6 ; 0 )
2) y = 5x - 10
Y = 0 ; 5x = 10 ; x = 2
X = 0 ; y = - 10
ответ ( 2 ; 0 ) ; ( 0 ; - 10 )