Насколько я помню у Вас оба треугольника неправильно построены. первая цифра (2;1) 2 -указывает по оси ОХ вправо 2 клетки в вашем масштабе и по оси ОY вверх 1 клетка. если минус - значит по оси ОХ влево, по оси ОY вниз. постройте правильно. и ответ будет такой - ось ОХ пересекает в точках (1;0),(-5;0).по оси ОY пересекает в точках (0;-1), (0;2),
по вашему рисунку левый треугольник пересекает ось Х (-2;0), (-4;0) - чтобы было понятно о чем я написала. но, повторяю, у вас неправильно построены треугольники
ясно, что двигаясь вниз и вправо, независимо от формы пути, фоксу нужно будет сделать 6 ходов, чтобы из левой верхней клетки попасть в правую нижнюю. из этих шести ходов 3 обязательно будут на одну клетку вниз, а 3 - на одну клетку вправо. поскольку после каждого ходачисло под фишкой меняется, то имеем перестановку из 6 элементов двух разных типов, по три каждого типа. чтобы подсчитать общее количество вариантов достижения правой нижней клетки применяем формулу для числа перестановок n элементов с повторениями:
p = n! / (n1! где n=6; n1=3 и n2=3.
подставляя, получаем
p=6! / (3! 3! )=720/36=20
ответ: 20