Формально, для графа {\displaystyle G=(V,E)}G=(V,E) и {\displaystyle K={\mathcal {P}}(V^{2})}{\displaystyle K={\mathcal {P}}(V^{2})} — множества всех двухэлементных подмножеств его вершин, дополнение {\displaystyle G'}G' определяется как пара {\displaystyle (V,K\setminus E)}{\displaystyle (V,K\setminus E)} — граф, с исходным набором вершин, и с набором ребёр, полученным из полного графа удалением имевшихся в заданном графе.
Дополнение пустого графа является полным графом, и наоборот. Независимое множество графа является кликой в дополнении графа, и наоборот. Дополнение любого графа без треугольников не содержит клешней.
Упрощаем выражения 1) -4а • 5 = -4 • 5а = -20а, коэффициент - это число (-20); 2) 8b • (-3) = 8 • (-3) • b = -24b, коэффициент - это число (-24); 3) (-5c) • 2 = (-5) • 2 • с = -10с, коэффициент - это число (-10); 4) 4x • (-3) = 4 • (-3)• х = - 12х, коэффициент - это число (-12); 5) 9y • (-5) = 9• (-5)у = -45у, коэффициент - это число (-45); 6) (-7m) • (-8) = 56 m, коэффициент - это число 56; 7) m • (-3) • (-5) = 15m, коэффициент - это число 15; 8) n • 7 • (-2) = -14n, коэффициент - это число (-14); 9) (-k) • 5 • (-3) = 15k, коэффициент - это число 15.
Пошаговое объяснение:
Упрощаем выражения 1) -4а • 5 = -4 • 5а = -20а, коэффициент - это число (-20);
2) 8b • (-3) = 8 • (-3) • b = -24b,
коэффициент - это число (-24); 3) (-5c) • 2 = (-5) • 2 • с = -10с
коэффициент - это число (-10); 4) 4x • (-3) = 4 • (-3)• х = - 12х,
коэффициент - это число (-12); 5) 9y • (-5) = 9• (-5)у = -45у,
коэффициент - это число (-45); 6) (-7m) • (-8) = 56 m,
коэффициент - это число 56; 7) m • (-3) • (-5) = 15m,
коэффициент - это число 15; 8) n • 7 • (-2) = -14n,
коэффициент - это число (-14); 9) (-k) • 5 • (-3) = 15k, коэффициент - это число 15.