М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TumblrPrincess
TumblrPrincess
04.11.2020 10:39 •  Математика

Известно, что в некотором месяце три четверга пришлись на четные числа. какой день недели был 29-го числа этого месяца? в ответе укажите номер дня недели (пн-1, вт-2, ср-3, чт-4, пт-5, сб-6, вс-7).

👇
Ответ:
ogne1arp
ogne1arp
04.11.2020
3 то есть среда. 2 число это четверг прибавляешь два раза по 14 получаешь 30 то есть это четверг, а вчера была среда
4,6(77 оценок)
Открыть все ответы
Ответ:
Takashu69
Takashu69
04.11.2020

Обращение пропорции. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то {\displaystyle \ {\frac {b}{a}}={\frac {d}{c}}} \ {\frac  ba}={\frac  dc}

Перемножение крайних членов пропорции со средними (крест-накрест). Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то {\displaystyle \ ad=bc} \ ad=bc

Перестановка средних и крайних членов. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то

{\displaystyle \ {\frac {a}{c}}={\frac {b}{d}}} \ {\frac  ac}={\frac  bd}    (перестановка средних членов пропорции),

{\displaystyle \ {\frac {d}{b}}={\frac {c}{a}}} \ {\frac  db}={\frac  ca}    (перестановка крайних членов пропорции).

Увеличение и уменьшение пропорции. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то

{\displaystyle \ {\dfrac {a+b}{b}}={\dfrac {c+d}{d}}} \ {\dfrac  {a+b}{b}}={\dfrac  {c+d}{d}}    (увеличение пропорции),

{\displaystyle \ {\dfrac {a-b}{b}}={\dfrac {c-d}{d}}} \ {\dfrac  {a-b}{b}}={\dfrac  {c-d}{d}}    (уменьшение пропорции).

Составление пропорции сложением и вычитанием. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то

{\displaystyle \ {\dfrac {a+c}{b+d}}={\frac {a}{b}}={\frac {c}{d}}} \ {\dfrac  {a+c}{b+d}}={\frac  ab}={\frac  cd}    (составление пропорции сложением),

{\displaystyle \ {\dfrac {a-c}{b-d}}={\frac {a}{b}}={\frac {c}{d}}} \ {\dfrac  {a-c}{b-d}}={\frac  ab}={\frac  cd}    (составление пропорции вычитанием).

История

Первое известное определение равных пропорций было дано как равенство последовательных вычитаний[1], современным языком это можно выразить как равенство цепных дробей для отношений величин.[2] Позже Евдокс упростил определение, равенство пропорций {\displaystyle a:b=c:d} {\displaystyle a:b=c:d} им определялось как одновременное выполнение одной из трёх пар соотношений

{\displaystyle m\cdot a>n\cdot b} {\displaystyle m\cdot a>n\cdot b} и {\displaystyle m\cdot c>n\cdot d} {\displaystyle m\cdot c>n\cdot d},

{\displaystyle m\cdot a=n\cdot b} {\displaystyle m\cdot a=n\cdot b} и {\displaystyle m\cdot c=n\cdot d} {\displaystyle m\cdot c=n\cdot d},

{\displaystyle m\cdot a<n\cdot b} {\displaystyle m\cdot a<n\cdot b} и {\displaystyle m\cdot c<n\cdot d} {\displaystyle m\cdot c<n\cdot d}

для любой пары натуральных чисел {\displaystyle m} m и {\displaystyle n} n. Это определение даётся в «Началах» Евклида.

С появлением вещественных чисел отпала необходимость в специальной теории пропорций, древние математики не рассматривали пропорции длины как числа. Определение Евдокса, в несколько более абстрактном виде использовалось далее при определении вещественных чисел данное Дедекиндом через сечения.

Связанные определения

Арифметическая пропорция

См. также: Среднее арифметическое

Равенство двух разностей {\displaystyle a-b=c-d} a-b=c-d иногда называют арифметической пропорцией[3].

Гармоническая пропорция

Основная статья: Золотое сечение

Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: {\displaystyle a:b=b:(a-b)} a:b=b:(a-b). В этом случае, разложение {\displaystyle a} a на сумму двух слагаемых {\displaystyle b} b и {\displaystyle a-b} a-b называется гармоническим делением или золотым сечением[4].

Задачи на тройное правило

В содержание задачи на простое тройное правило входят две величины, связанные пропорциональной зависимостью, при этом даются два значения одной величины и одно из соответствующих значений другой величины, требуется же найти её второе значение.

Задачами на сложное тройное правило называют задачи, в которых по ряду нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений величин[5][6].

4,5(59 оценок)
Ответ:

Найдем наибольший общий делитель для кол-ва фруктов каждого вида.

92=2*2*23;

138=2*3*23;

230=2*5*23.

Пошаговое объяснение:НОК=2*23=46 - то есть максимально бабушка могла закрыть 46 банок, в каждой из которых лежали бы 2 груши, 3 яблока и 5 абрикосов

(возможны ситуации, в которых бабушка закрыла бы всего 2 банки, в каждой из которых оказались бы 46 груш, 69 яблок и 115 абрикосов, или всего 23 банки (в каждой из которых 4 яблока, 6 груш и 10 абрикосов, но первый вариант - с НОК - логичнее. Скорее всего, он и подразумевается)

4,5(6 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ