Если число делится на 12, то оно делится и на 3, и на 4.
Следовательно, можно сделать первый вывод – это число чётное.
По условию произведение цифр числа больше 25, но меньше 30. Между 25 и 30 два чётных числа – 26 и 28. Поэтому произведение цифр может быть равно 26 или 28.
Разложим на множители:
26 = 2∙13.
Тогда одним из множителей произведения цифр четырёхзначного числа должно быть число 13, но наибольшая цифра – 9, поэтому 26 не может быть произведением цифр числа.
Вывод: произведение цифр данного числа равно 28.
Разложим 28 на множители:
28 = 4∙7 = 2∙2∙7
Число четырёхзначное, множителей должно быть четыре:
1∙1∙4∙7
1∙2∙2∙7
Так как данное число делится на 3, то сумма цифр должна делиться на 3:
1 + 1 + 4 + 7 = 13 – не делится на 3.
1 + 2 + 2 + 7 = 12 – делится на 3.
Определили все цифры. Это 1; 2; 2; 7.
Данное число должно делиться на 4, по признаку делимости на 4 оно должно оканчиваться двумя цифрами, которые образуют число, делящееся на 4. Значит, последние две цифры 12 или 72.
Составим варианты таких чисел:
7212; 2712; 1272; 2172.
1) 1750:7=250 (т) - хлеба выпекают за один день.
2) 250*30=7500 (т) - хлеба выпекут за 30 дней.
с х)
Пусть за 30 дней выпекут х т хлеба. За один день выпекают 1750:7 или х:30 т хлеба.
Составим и решим уравнение:
1750:7=х:30
250=х:30
х=30*250
х=7500 т хлеба испекут за 30 дней.
ОТВЕТ: 7500 т хлеба.