ответ:Нельзя. Решение: Допустим, центр окружности красный. Тогда на окружности 1006 красных и 1007 синих точек, и потому там найдутся две синие точки, стоящие рядом. Но тогда и следующая за ними по часовой стрелке точка должна быть синей — иначе найдётся синяя точка, соединённая с одной синей. Продолжая рассуждение, получаем, что все точки, отмеченные на окружности, должны быть синими — противоречие. Допустим, центр окружности синий. Тогда на окружности найдутся две красные точки, стоящие рядом. Но тогда и следующая за ними по часовой стрелке точка должна быть красной — иначе найдётся красная точка, соединённая с двумя синими. Продолжая рассуждение, получаем, что все точки, отмеченные на окружности, должны быть красными — снова противоречие.
Решение ищем по формуле Муавра-Лапласа. Обозначим р=0,1 (вероятность успеха) , n=500 (количество испытаний). Матожидание числа опытов М=n*p=500*0,1=50, дисперсия D=n*p*(1-p)=50*0,9=45. (50-10)/(45^0.5)>P>(50-7)/(45^0.5), то есть 6,41>P>5,963. Р=1/(6,28^0,5)интеграл в пределах от 5,963 до 6,41 exp(-x^2/2)=1,166*10^-9. Интеграл табличный, решается через табулированную функцию. Требуемые значения случайной величины выходят за границу 4* ско, поэтому значение вероятности и такое маленькое.