ответ:
-21
пошаговое объяснение:
пусть x_0x
0
— абсцисса точки на графике функции y=-12x^2+bx-10,y=−12x
2
+bx−10, через которую проходит касательная к этому графику.
значение производной в точке x_0x
0
равно угловому коэффициенту касательной, то есть y'(x_0)=-24x_0+b=3.y
′
(x
0
)=−24x
0
+b=3. с другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2.−12x
0
2
+bx
0
−10=3x
0
+2. получаем систему уравнений \begin{cases} -24x_0+b=-12x_0^2+bx_0-10=3x_0+2. \end{cases}{
−24x
0
+b=3,
−12x
0
2
+bx
0
−10=3x
0
+2.
решая эту систему, получим x_0^2=1,x
0
2
=1, значит либо x_0=-1,x
0
=−1, либо x_0=1.x
0
=1. согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1,x
0
=−1, тогда b=3+24x_0=-21.b=3+24x
0
=−21.
ответ
-21
Вероятность работы для них = р1 = 1-q1= 0.92 p2= 0.88
а)
Есть замятие в ОДНОЙ из них - ИЛИ одна ИЛИ другая
Р(а) = p1*q1 + q`*p2 = 0.92*0.12 + 0.08*0.88 = 0.1104+0.0704 = 0.18.08 = 18.08% - ОТВЕТ
б) Замятие сразу в двух - И в первой И во второй
Р(б) = q1*q2 = 0.08*0.12 = 0.0096 = 0.96% - ОТВЕТ