Правила умножения и деления алгебраических дробей
Умножение и деление алгебраических дробей выполняется по тем же правилам, по которым проводятся соответствующие действия с обыкновенными дробями. Напомним их.
Нам известно, что при умножении обыкновенных дробей отдельно перемножаются числители и отдельно – знаменатели, первое произведение записывается числителем, а второе – знаменателем. Например, .
А деление обыкновенных дробей заменяется умножением на дробь, обратную делителю. К примеру, .
Теперь можно увидеть отчетливое сходство с правилами умножения и деления алгебраических дробей, которые мы сейчас и сформулируем.
Умножение двух и вообще любого числа алгебраических дробей в результате дает дробь, числитель которой равен произведению числителей, а знаменатель – произведению знаменателей перемножаемых дробей. Этому правилу отвечает равенство , где a, b, c и d – некоторые многочлены, причем b и d – ненулевые.
Чтобы разделить одну алгебраическую дробь на другую, нужно первую дробь умножить на дробь, обратную второй. То есть, деление алгебраических дробей выполняется следующим образом , где a, b, c и d – некоторые многочлены, причем b, c и d – ненулевые.
Здесь стоит обратить внимание на то, что под алгебраической дробью, обратной данной, понимают такую дробь, произведение которой с исходной тождественно равно единице. То есть, взаимно обратные алгебраические дроби определяются аналогично взаимно обратным числам. И из того, как мы определили умножение алгебраических дробей, следует, что взаимно обратные алгебраические дроби различаются тем, что у них числители и знаменатели переставлены местами. Например, обратной к алгебраической дроби будет дробь .
Пошаговое объяснение:
a) х = √3 см, у = 2√3 см, или CB = √3 см, AB = 2√3 см.
b) х = 4√2 см, у = 4√2 см, или NM = 4√2 см, NK = 4√2 см.
c) х = 20 см, у = 10√3 см, или PT = 20 см, RT = 10√3 см.
d) х = 2√3 см, у = 4√3/3 см, или EH = 2√3 см, FG = 4√3/3 см.
Пошаговое объяснение:
а) Катет равен другому катету, умноженному на тангенс угла, противолежащего данному катету:
х = 3 * tg 30° = 3 * (√3/3) = √3 см,
у = 2х = 2√3 см, т.к. катет, лежащий против угла 30°, равен половине гипотенузы.
ответ: х = √3 см, у = 2√3 см, или CB = √3 см, AB = 2√3 см.
b)
∠М = 180°-∠N-∠K =180°-90°-45° =45°,
т.к. ∠М = ∠K = 45°, то ΔMNK - равнобедренный и х = у.
Катет равен гипотенузе, умноженной на синус угла противолежащего этому катету:
х = 8*sin45° = 8 * (√2/2) = 4√2
ответ: х = 4√2 см, у = 4√2 см, или NM = 4√2 см, NK = 4√2 см
c)
∠Т = 180°-∠R-∠P = 180°-90°-60° =30°,
PR = 10 cм и лежит против угла в 30°, значит он равен 1/2 гипотенузы х, откуда х = 10* 2 = 20 см;
Катет равен гипотенузе, умноженной на синус угла противолежащего этому катету:
у = 20 * sin60° = 20 * (√3/2) = 10√3 см.
ответ: х = 20 см, у = 10√3 см, или PT = 20 см, RT = 10√3 см
d)
В прямоугольном ΔEFH катет FH лежит против угла 30°, следовательно, гипотенуза EF этого треугольника равна 2FH :
EF = 2* FH = 2* 2 = 4 см;
отсюда х = √(EF²- FH²) = √(4²- 2²) = √(16 -4) = √12 = 2√3.
В прямоугольном ΔFGH катет GH равен другому катету FH, умноженному на тангенс угла, противолежащего этому катету (а угол HFG = 30°):
GH = FH *tg 30° = 2 * (√3/3) = (2√3)/3 см;
отсюда
у = √(FH²+HG²) = √(2²+(2√3/3)²) = √(4 + 4*3/9) = √(36+12)/9= √48/9= √(16*3) /9= 4√3/3 см
ответ: х = 2√3 см, у = 4√3/3 см, или EH = 2√3 см, FG = 4√3/3 см
2)135*7=945(кг)-сена понадобится для девяти коров.
3)540+945=1485(кг)
ответ:945кг сена должен расходовать фермер ежемесячно на всех лошадей и коров.