y’ всегда положительна.
Пошаговое объяснение:
Найдём производную функции:
y’=15x^4+27x^8
Приравняем производную функции к нулю и найдём критические точки:
15x^4+27x^8=0;
3x^4(5+9x^4)=0;
x1=0
9x^4=-5
Т.к. значение в четвертой степени всегда положительно, а число"-5" отрицательно, то у х2 нет решения.
В итоге решение одно-"х=0". Исследуем эту точку на максимум/минимум.
У нас есть 2 интервала: (-∞;0)∪(0;+∞). Возьмём любую точку из обоих интервалов и подставим в производную, например, -1 и 1:
15*1^4+27*1^8=42;
15*(-1)^4+27*(-1)^8=42;
Как видно, оба значения получились положительными. Это значит, что в точке х=0 нет ни минимума, ни максимума и функция монотонно возрастает.
650+320=970
2.(560+120)-240=440
680-240=440
3.(650-210)+(240+20)=700
440+260=700
4.1000-(650-120)=470
1000-530=470
5.(168+120)+240=528
288+240=528