Відповідь:
14 часов
Покрокове пояснення:
Для решения задачи сперва нужно определить количество времени за которое бассейн наполняется через 2 трубы.
Для этого находим продуктивность работы каждой из труб за 1 час.
Поскольку вся работа равна 1, получим.
1/12 продуктивность работы первой трубы за час.
1/24 продуктивность работы второй трубы за час.
1/12+1/24=3/4=1/8. Продуктивность работы двух труб за час вместе.
Находим количество работы для второй трубы за 9 часов.
Получим.
1/24*9=3/8.
Находим количество работы выполненное первой трубой.
1-3/8=5/8.
Находим период работы двух труб вместе.
5/8 / 1/8=5/8*8/1=40/8=5 часов.
Находим период наполнения.
5+9=14 часов.
Пошаговое объяснение:
Сторони паралелограма дорівнюють 4.4 см і 5.6 см. Висота проведена до більшої сторони, дорівнює 3,3 см. Обчисліть другу висоту цього паралелограма. Дуже Дякую.
Нехай сторона а = 5.8 см, b = 4.4 см, h_a = 3 см. Знайти h_b.
Знайдемо площу паралелограма:
S = a\cdot h_a\\S = 5.8\cdot 3 = 17.4 \:\: (cm^2)
Використавши формулу ще раз, знайдемо другу висоту:
S = b\cdot h_b \:\Rightarrow \:h_b = \frac{S}{b} \\h_b = \frac{17.4}{4.4} = 3.9 \:\: (cm)
Відповідь: Друга висота паралелограма рівна 3.9 см.