объясняю ( не для того, кто задал во а для тех, "кто в танке")
1)комиссия состоит из 3-х человек.
2) в комиссию может войти
а) один из 6-ти десятиклассников и 2 из 8-и одиннадцатиклассников
б) ни одного десятиклассника (т.к. понятие не более - это значит равно и меньше. Для людей - это 1 либо 0). Тогда в комиссии будут только 3 одиннадцатиклассника.
Решаем
а) 2 из 8 одиннадцатиклассников = 8!/(2!*(8-2)!) =28 но на каждого из 6 десятикл. приходится 28 комбинаций из 2-х одиннадцатикл. , соответственно комиссию можно составить б) 3 из 8 одиннадцатикл. = 8!/(3!*(8-3)!)=56
т.е. всего возможных комбинаций при заданном условии задачи будет
ответ: lim xn=ln2.
Пошаговое объяснение:
Так как n≠0, то выражение 2^(1/n), а вместе с ним и выражение xn=n*[2^(1/n)-1], определены при любом натуральном n. Для нахождения предела последовательности положим 1/n=m. Тогда n=1/m, при n⇒∞ m⇒0 и выражение примет вид: (2^m-1)/m. Если m⇒0, то 2^m-1⇒0 и мы имеем неопределённость вида 0/0. Для нахождения её предела используем правило Лопиталя: (2^x-1)'=(2^x)*ln2, x'=1, поэтому искомый предел равен пределу выражения (2^x-1)'/x'=(2^x)*ln2 при x⇒0. Очевидно что этот предел равен ln2.