ответ: У Пети 65 шариков; у Вани 35 шариков; у Толи 20 шариков.
Пошаговое объяснение: Решаем задачу в обратном порядке:
(Толя дал Пети и Ване столько, сколько у них стало)
40÷2=20 (шариков) было у Пети, перед Толиным дележём.
40÷2=20 (шариков) было у Вани, перед Толиным дележём.
40+20+20=80 (шариков) было у Толи, перед Толиным дележём.
(Ваня дал Толе и Пете столько шариков, сколько у них стало)
80÷2=40 (шариков) было у Толи, перед Ваниным дележём.
20÷2=10 (шариков) было у Пети, перед Ваниным дележём.
20+40+10=70 (шариков) было у Вани, перед Ваниным дележём.
(Сначала Петя дал Ване и Толе столько шариков, сколько у них было)
70÷2=35 (шариков) было у Вани вначале.
40÷2=20 (шариков) было у Толи вначале.
10+35+20=65 (шариков) было у Пети вначале.
накрест лежащие углы равны, или
соответственные углы равны, или
сумма односторонних углов равна 180°, то
прямые параллельны
Доказательство. Ограничимся доказательством случая 1.
Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.
Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.