Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
или х= (-38+50)/2 = 6 (км/ч)
ответ: 6 км/ч
Для этого вместо у надо подставить значение 5:
3x^2+5x+3 = 5.
Получаем квадратное уравнение:
3x^2+5x-2 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=5^2-4*3*(-2)=25-4*3*(-2)=25-12*(-2)=25-(-12*2)=25-(-24)=25+24=49;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√49-5)/(2*3)=(7-5)/(2*3)=2/(2*3)=2/6=1/3;x_2=(-√49-5)/(2*3)=(-7-5)/(2*3)=-12/(2*3)=-12/6=-2.
В точках х=1/3 и х=-2 функция имеет значение у=5.
2)Постройте график функции y=3x^2+4 с графика найдите наибольшие и наименьшие значения функции.
График функции y=3x^2+4 - парабола ветвями вверх с вершиной на оси ординат в точке х=0, у=4. Это и есть минимальное значение функции.
Максимального значения у такой функции нет.
Для построения графика надо вместо х подставить несколько значений и рассчитать у. Потом по полученным точкам построить кривую.
3)Постройте график функции y=x^2+4x-12.Найдите по графику промежутки возрастания и убывания функции.
Находим вершину параболы: хо = -в/2а = -4/2 = -2.
Так как парабола ветвями вверх, то к вершине функция слева убывает, а после вершины направо возрастает.
4)Найдите точки пересечения графика функций y=x-3 и y=(x-3)^2-2.
Для нахождения точки пересечения надо приравнять функции:
x-3 =(x-3)^2-2. Раскроем скобки и приведём подобные:
x-3 = x²-6х+9-2.
х²-7х+10 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-7)^2-4*1*10=49-4*10=49-40=9;
Дискриминант больше 0, уравнение имеет 2 корня:x₁=(√9-(-7))/(2*1)=(3-(-7))/2=(3+7)/2=10/2=5;x₂=(-√9-(-7))/(2*1)=(-3-(-7))/2=(-3+7)/2=4/2=2.
Полученные значения х₁=2 и х₂=5 и есть точки пересечения графиков по оси х.
Находим значения по оси у:х₁=2 у₁ = 2-3 = -1.
х₂=5 у₂ = 5-3 = 2.